Suppr超能文献

从多个转录组学数据集鉴定宿主基因组生物标志物,用于 SARS-CoV-2 感染的诊断和治疗。

Identification of host genomic biomarkers from multiple transcriptomics datasets for diagnosis and therapies of SARS-CoV-2 infections.

机构信息

Faculty of Science, Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh.

Department of Statistics, Bioinformatics Laboratory (Dry), University of Rajshahi, Rajshahi, Bangladesh.

出版信息

PLoS One. 2023 Mar 13;18(3):e0281981. doi: 10.1371/journal.pone.0281981. eCollection 2023.

Abstract

The pandemic of COVID-19 is a severe threat to human life and the global economy. Despite the success of vaccination efforts in reducing the spread of the virus, the situation remains largely uncontrolled due to the random mutation in the RNA sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which demands different variants of effective drugs. Disease-causing gene-mediated proteins are usually used as receptors to explore effective drug molecules. In this study, we analyzed two different RNA-Seq and one microarray gene expression profile datasets by integrating EdgeR, LIMMA, weighted gene co-expression network and robust rank aggregation approaches, which revealed SARS-CoV-2 infection causing eight hub-genes (HubGs) including HubGs; REL, AURKA, AURKB, FBXL3, OAS1, STAT4, MMP2 and IL6 as the host genomic biomarkers. Gene Ontology and pathway enrichment analyses of HubGs significantly enriched some crucial biological processes, molecular functions, cellular components and signaling pathways that are associated with the mechanisms of SARS-CoV-2 infections. Regulatory network analysis identified top-ranked 5 TFs (SRF, PBX1, MEIS1, ESR1 and MYC) and 5 miRNAs (hsa-miR-106b-5p, hsa-miR-20b-5p, hsa-miR-93-5p, hsa-miR-106a-5p and hsa-miR-20a-5p) as the key transcriptional and post-transcriptional regulators of HubGs. Then, we conducted a molecular docking analysis to determine potential drug candidates that could interact with HubGs-mediated receptors. This analysis resulted in the identification of top-ranked ten drug agents, including Nilotinib, Tegobuvir, Digoxin, Proscillaridin, Olysio, Simeprevir, Hesperidin, Oleanolic Acid, Naltrindole and Danoprevir. Finally, we investigated the binding stability of the top-ranked three drug molecules Nilotinib, Tegobuvir and Proscillaridin with the three top-ranked proposed receptors (AURKA, AURKB, OAS1) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore, the findings of this study might be useful resources for diagnosis and therapies of SARS-CoV-2 infections.

摘要

新型冠状病毒肺炎疫情是对人类生命和全球经济的严重威胁。尽管疫苗接种工作在降低病毒传播方面取得了成功,但由于严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)的 RNA 序列随机突变,导致需要不同有效的药物变体,因此情况在很大程度上仍未得到控制。致病基因介导的蛋白质通常被用作受体来探索有效的药物分子。在这项研究中,我们通过整合 EdgeR、LIMMA、加权基因共表达网络和稳健秩聚合方法,分析了两个不同的 RNA-Seq 和一个微阵列基因表达谱数据集,揭示了 SARS-CoV-2 感染导致 8 个枢纽基因(HubGs),包括 REL、AURKA、AURKB、FBXL3、OAS1、STAT4、MMP2 和 IL6,作为宿主基因组生物标志物。HubGs 的基因本体论和途径富集分析显著丰富了一些关键的生物学过程、分子功能、细胞成分和与 SARS-CoV-2 感染机制相关的信号通路。调控网络分析确定了排名前 5 的 TFs(SRF、PBX1、MEIS1、ESR1 和 MYC)和 5 个 miRNA(hsa-miR-106b-5p、hsa-miR-20b-5p、hsa-miR-93-5p、hsa-miR-106a-5p 和 hsa-miR-20a-5p)作为 HubGs 的关键转录和转录后调控因子。然后,我们进行了分子对接分析,以确定可能与 HubGs 介导的受体相互作用的潜在药物候选物。该分析确定了排名前 10 的药物候选物,包括尼罗替尼、替诺福韦、地高辛、普斯卡林、奥利西奥、西米普瑞韦、橙皮苷、齐墩果酸、纳曲酮和丹诺瑞韦。最后,我们通过使用 100 ns MD 基于 MM-PBSA 模拟,研究了排名前 3 的药物分子尼罗替尼、替诺福韦和普斯卡林与 3 个排名前 3 的提议受体(AURKA、AURKB、OAS1)的结合稳定性,并观察到它们的稳定性能。因此,本研究的结果可能为 SARS-CoV-2 感染的诊断和治疗提供有用的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b431/10010564/81d8376b7423/pone.0281981.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验