Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California, San Diego, La Jolla, California 92093; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, California 92093.
Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229; Audie L. Murphy Memorial Veterans Affairs Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78229.
J Biol Chem. 2020 May 22;295(21):7249-7260. doi: 10.1074/jbc.RA119.011110. Epub 2020 Apr 10.
Exposure to chronic hyperglycemia because of diabetes mellitus can lead to development and progression of diabetic kidney disease (DKD). We recently reported that reduced superoxide production is associated with mitochondrial dysfunction in the kidneys of mouse models of type 1 DKD. We also demonstrated that humans with DKD have significantly reduced levels of mitochondrion-derived metabolites in their urine. Here we examined renal superoxide production in a type 2 diabetes animal model, the mouse, and the role of a mitochondrial protectant, MTP-131 (also called elamipretide, SS-31, or Bendavia) in restoring renal superoxide production and ameliorating DKD. We found that 18-week-old mice have reduced renal and cardiac superoxide levels, as measured by dihydroethidium oxidation, and increased levels of albuminuria, mesangial matrix accumulation, and urinary HO Administration of MTP-131 significantly inhibited increases in albuminuria, urinary HO, and mesangial matrix accumulation in mice and fully preserved levels of renal superoxide production in these mice. MTP-131 also reduced total renal lysocardiolipin and major lysocardiolipin subspecies and preserved lysocardiolipin acyltransferase 1 expression in mice. These results indicate that, in type 2 diabetes, DKD is associated with reduced renal and cardiac superoxide levels and that MTP-131 protects against DKD and preserves physiological superoxide levels, possibly by regulating cardiolipin remodeling.
由于糖尿病导致的慢性高血糖会导致糖尿病肾病(DKD)的发生和进展。我们最近报道,在 1 型 DKD 小鼠模型的肾脏中,超氧化物产生减少与线粒体功能障碍有关。我们还表明,患有 DKD 的人类尿液中的线粒体衍生代谢物水平显著降低。在这里,我们检查了 2 型糖尿病动物模型,即小鼠的肾脏中超氧化物的产生,以及线粒体保护剂 MTP-131(也称为 elamipretide、SS-31 或 Bendavia)在恢复肾脏超氧化物产生和改善 DKD 中的作用。我们发现,18 周大的小鼠肾脏和心脏的超氧化物水平降低,如二氢乙啶氧化测量所示,并且白蛋白尿、肾小球系膜基质积累和尿 H2O2 水平升高。MTP-131 的给药显著抑制了 小鼠的白蛋白尿、尿 H2O2 和肾小球系膜基质积累的增加,并完全保留了这些小鼠肾脏中超氧化物产生的水平。MTP-131 还降低了 小鼠的总肾溶血磷脂酰胆碱和主要溶血磷脂酰胆碱亚种,并保留了溶酶体磷脂酰转移酶 1 的表达。这些结果表明,在 2 型糖尿病中,DKD 与肾脏和心脏中超氧化物水平降低有关,而 MTP-131 可预防 DKD 并维持生理超氧化物水平,可能通过调节心磷脂重塑。