Suppr超能文献

用 elamipretide(MTP-131)恢复线粒体超氧化物水平可保护小鼠免受糖尿病肾病的进展。

Restoring mitochondrial superoxide levels with elamipretide (MTP-131) protects mice against progression of diabetic kidney disease.

机构信息

Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California, San Diego, La Jolla, California 92093; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, California 92093.

Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229; Audie L. Murphy Memorial Veterans Affairs Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78229.

出版信息

J Biol Chem. 2020 May 22;295(21):7249-7260. doi: 10.1074/jbc.RA119.011110. Epub 2020 Apr 10.

Abstract

Exposure to chronic hyperglycemia because of diabetes mellitus can lead to development and progression of diabetic kidney disease (DKD). We recently reported that reduced superoxide production is associated with mitochondrial dysfunction in the kidneys of mouse models of type 1 DKD. We also demonstrated that humans with DKD have significantly reduced levels of mitochondrion-derived metabolites in their urine. Here we examined renal superoxide production in a type 2 diabetes animal model, the mouse, and the role of a mitochondrial protectant, MTP-131 (also called elamipretide, SS-31, or Bendavia) in restoring renal superoxide production and ameliorating DKD. We found that 18-week-old mice have reduced renal and cardiac superoxide levels, as measured by dihydroethidium oxidation, and increased levels of albuminuria, mesangial matrix accumulation, and urinary HO Administration of MTP-131 significantly inhibited increases in albuminuria, urinary HO, and mesangial matrix accumulation in mice and fully preserved levels of renal superoxide production in these mice. MTP-131 also reduced total renal lysocardiolipin and major lysocardiolipin subspecies and preserved lysocardiolipin acyltransferase 1 expression in mice. These results indicate that, in type 2 diabetes, DKD is associated with reduced renal and cardiac superoxide levels and that MTP-131 protects against DKD and preserves physiological superoxide levels, possibly by regulating cardiolipin remodeling.

摘要

由于糖尿病导致的慢性高血糖会导致糖尿病肾病(DKD)的发生和进展。我们最近报道,在 1 型 DKD 小鼠模型的肾脏中,超氧化物产生减少与线粒体功能障碍有关。我们还表明,患有 DKD 的人类尿液中的线粒体衍生代谢物水平显著降低。在这里,我们检查了 2 型糖尿病动物模型,即小鼠的肾脏中超氧化物的产生,以及线粒体保护剂 MTP-131(也称为 elamipretide、SS-31 或 Bendavia)在恢复肾脏超氧化物产生和改善 DKD 中的作用。我们发现,18 周大的小鼠肾脏和心脏的超氧化物水平降低,如二氢乙啶氧化测量所示,并且白蛋白尿、肾小球系膜基质积累和尿 H2O2 水平升高。MTP-131 的给药显著抑制了 小鼠的白蛋白尿、尿 H2O2 和肾小球系膜基质积累的增加,并完全保留了这些小鼠肾脏中超氧化物产生的水平。MTP-131 还降低了 小鼠的总肾溶血磷脂酰胆碱和主要溶血磷脂酰胆碱亚种,并保留了溶酶体磷脂酰转移酶 1 的表达。这些结果表明,在 2 型糖尿病中,DKD 与肾脏和心脏中超氧化物水平降低有关,而 MTP-131 可预防 DKD 并维持生理超氧化物水平,可能通过调节心磷脂重塑。

相似文献

1
Restoring mitochondrial superoxide levels with elamipretide (MTP-131) protects mice against progression of diabetic kidney disease.
J Biol Chem. 2020 May 22;295(21):7249-7260. doi: 10.1074/jbc.RA119.011110. Epub 2020 Apr 10.
2
Alpha lipoamide inhibits diabetic kidney fibrosis via improving mitochondrial function and regulating RXRα expression and activation.
Acta Pharmacol Sin. 2023 May;44(5):1051-1065. doi: 10.1038/s41401-022-00997-1. Epub 2022 Nov 8.
3
AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function.
J Clin Invest. 2013 Nov;123(11):4888-99. doi: 10.1172/JCI66218. Epub 2013 Oct 25.
5
Moderate exercise attenuates caspase-3 activity, oxidative stress, and inhibits progression of diabetic renal disease in db/db mice.
Am J Physiol Renal Physiol. 2009 Apr;296(4):F700-8. doi: 10.1152/ajprenal.90548.2008. Epub 2009 Jan 14.
6
Telmisartan attenuates diabetic nephropathy by suppressing oxidative stress in db/db mice.
Nephron Exp Nephrol. 2012;121(3-4):e97-e108. doi: 10.1159/000343102. Epub 2013 Jan 10.
7
Complement C5a Induces Renal Injury in Diabetic Kidney Disease by Disrupting Mitochondrial Metabolic Agility.
Diabetes. 2020 Jan;69(1):83-98. doi: 10.2337/db19-0043. Epub 2019 Oct 17.
8
Micheliolide ameliorates diabetic kidney disease by inhibiting Mtdh-mediated renal inflammation in type 2 diabetic db/db mice.
Pharmacol Res. 2019 Dec;150:104506. doi: 10.1016/j.phrs.2019.104506. Epub 2019 Oct 24.

引用本文的文献

1
Metabolic anomalies in vitiligo: a new frontier for drug repurposing strategies.
Front Pharmacol. 2025 Apr 15;16:1546836. doi: 10.3389/fphar.2025.1546836. eCollection 2025.
3
Cadmium-cardiolipin disruption of respirasome assembly and redox balance through mitochondrial membrane rigidification.
J Lipid Res. 2025 Mar;66(3):100750. doi: 10.1016/j.jlr.2025.100750. Epub 2025 Jan 27.
4
Don´t give up on mitochondria as a target for the treatment of diabetes and its complications.
World J Diabetes. 2024 Oct 15;15(10):2015-2021. doi: 10.4239/wjd.v15.i10.2015.
5
CircPWWP2A promotes renal interstitial fibrosis through modulating miR-182/ROCK1 axis.
Ren Fail. 2024 Dec;46(2):2396455. doi: 10.1080/0886022X.2024.2396455. Epub 2024 Sep 4.
7
From Physiology to Pathology: The Role of Mitochondria in Acute Kidney Injuries and Chronic Kidney Diseases.
Kidney Dis (Basel). 2023 Apr 4;9(5):342-357. doi: 10.1159/000530485. eCollection 2023 Oct.
8
Mechanisms of Modulation of Mitochondrial Architecture.
Biomolecules. 2023 Aug 7;13(8):1225. doi: 10.3390/biom13081225.
9
The Mitochondrion: A Promising Target for Kidney Disease.
Pharmaceutics. 2023 Feb 8;15(2):570. doi: 10.3390/pharmaceutics15020570.
10
Mitochondrial Contribution to Inflammation in Diabetic Kidney Disease.
Cells. 2022 Nov 16;11(22):3635. doi: 10.3390/cells11223635.

本文引用的文献

1
Phosphatidic Acid and Cardiolipin Coordinate Mitochondrial Dynamics.
Trends Cell Biol. 2018 Jan;28(1):67-76. doi: 10.1016/j.tcb.2017.08.011. Epub 2017 Sep 11.
2
Mitochondrial hormesis and diabetic complications.
Diabetes. 2015 Mar;64(3):663-72. doi: 10.2337/db14-0874.
3
OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation.
Brain. 2015 Mar;138(Pt 3):563-76. doi: 10.1093/brain/awu378. Epub 2015 Jan 5.
4
AMP-activated protein kinase (AMPK) activation inhibits nuclear translocation of Smad4 in mesangial cells and diabetic kidneys.
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1167-77. doi: 10.1152/ajprenal.00234.2014. Epub 2014 Nov 26.
6
Deciphering of mitochondrial cardiolipin oxidative signaling in cerebral ischemia-reperfusion.
J Cereb Blood Flow Metab. 2015 Feb;35(2):319-28. doi: 10.1038/jcbfm.2014.204. Epub 2014 Nov 19.
7
OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand.
EMBO J. 2014 Nov 18;33(22):2676-91. doi: 10.15252/embj.201488349. Epub 2014 Oct 8.
8
Diabetic kidney disease: a report from an ADA Consensus Conference.
Am J Kidney Dis. 2014 Oct;64(4):510-33. doi: 10.1053/j.ajkd.2014.08.001.
9
NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair?
Free Radic Biol Med. 2014 Nov;76:34-46. doi: 10.1016/j.freeradbiomed.2014.07.033. Epub 2014 Aug 1.
10
The mitochondrial cardiolipin remodeling enzyme lysocardiolipin acyltransferase is a novel target in pulmonary fibrosis.
Am J Respir Crit Care Med. 2014 Jun 1;189(11):1402-15. doi: 10.1164/rccm.201310-1917OC.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验