Suppr超能文献

线粒体应激效应与糖尿病并发症

Mitochondrial hormesis and diabetic complications.

作者信息

Sharma Kumar

机构信息

Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego, San Diego, CA, and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA

出版信息

Diabetes. 2015 Mar;64(3):663-72. doi: 10.2337/db14-0874.

Abstract

The concept that excess superoxide production from mitochondria is the driving, initial cellular response underlying diabetes complications has been held for the past decade. However, results of antioxidant-based trials have been largely negative. In the present review, the data supporting mitochondrial superoxide as a driving force for diabetic kidney, nerve, heart, and retinal complications are reexamined, and a new concept for diabetes complications--mitochondrial hormesis--is presented. In this view, production of mitochondrial superoxide can be an indicator of healthy mitochondria and physiologic oxidative phosphorylation. Recent data suggest that in response to excess glucose exposure or nutrient stress, there is a reduction of mitochondrial superoxide, oxidative phosphorylation, and mitochondrial ATP generation in several target tissues of diabetes complications. Persistent reduction of mitochondrial oxidative phosphorylation complex activity is associated with the release of oxidants from nonmitochondrial sources and release of proinflammatory and profibrotic cytokines, and a manifestation of organ dysfunction. Restoration of mitochondrial function and superoxide production via activation of AMPK has now been associated with improvement in markers of renal, cardiovascular, and neuronal dysfunction with diabetes. With this Perspective, approaches that stimulate AMPK and PGC1α via exercise, caloric restriction, and medications result in stimulation of mitochondrial oxidative phosphorylation activity, restore physiologic mitochondrial superoxide production, and promote organ healing.

摘要

在过去十年中,一直认为线粒体产生过量超氧化物是糖尿病并发症潜在的初始细胞驱动反应。然而,基于抗氧化剂的试验结果大多为阴性。在本综述中,重新审视了支持线粒体超氧化物作为糖尿病肾病、神经病变、心脏病变和视网膜病变驱动因素的数据,并提出了糖尿病并发症的新概念——线粒体应激效应。从这个角度来看,线粒体超氧化物的产生可能是健康线粒体和生理性氧化磷酸化的一个指标。最近的数据表明,在糖尿病并发症的几个靶组织中,对过量葡萄糖暴露或营养应激的反应是线粒体超氧化物、氧化磷酸化和线粒体ATP生成减少。线粒体氧化磷酸化复合物活性的持续降低与非线粒体来源的氧化剂释放以及促炎和促纤维化细胞因子的释放有关,是器官功能障碍的一种表现。现在已经发现,通过激活AMPK恢复线粒体功能和超氧化物产生与改善糖尿病患者的肾脏、心血管和神经功能障碍标志物有关。基于此观点,通过运动、热量限制和药物刺激AMPK和PGC1α的方法会刺激线粒体氧化磷酸化活性,恢复生理性线粒体超氧化物产生,并促进器官愈合。

相似文献

引用本文的文献

1
Role of membrane microdomains in cardiac protection: strategies for diabetic cardiomyopathy.膜微区在心脏保护中的作用:糖尿病性心肌病的治疗策略
Am J Physiol Heart Circ Physiol. 2025 Aug 1;329(2):H572-H591. doi: 10.1152/ajpheart.00139.2025. Epub 2025 Jul 10.
7
Energy metabolism in health and diseases.健康与疾病中的能量代谢。
Signal Transduct Target Ther. 2025 Feb 18;10(1):69. doi: 10.1038/s41392-025-02141-x.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验