Suppr超能文献

电泳诊断设备中铂电极的电化学侵蚀与腐蚀。

Electrochemical attack and corrosion of platinum electrodes in dielectrophoretic diagnostic devices.

机构信息

OHSU Knight Cancer Early Detection Advanced Research Center, 2730 SW Moody Ave, KR-CEDR, Portland, OR, 97201, USA.

Department of Nanoengineering, UC San Diego, MC 0448, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA.

出版信息

Anal Bioanal Chem. 2020 Jun;412(16):3871-3880. doi: 10.1007/s00216-020-02607-7. Epub 2020 Apr 10.

Abstract

Though the advances in microelectronic device fabrication have realized new capabilities in integrated analytical and diagnostic platforms, there are still notable limitations in point-of-care sample preparation. AC electrokinetic devices, especially those leveraging dielectrophoresis (DEP), have shown potential to solve these limitations and allow for sample-to-answer in a single point-of-care device. However, when working directly with whole blood or other high conductance (~ 1 S/m) biological fluids, the aggressive electrochemical conditions created by the electrode can fundamentally limit the device operation. In this study, platinum wire-based electrode devices spanning circular polytetrafluorethylene (PTFE) wells and a planar microarray device with sputtered platinum electrodes were tested in plasma and PBS buffers of differing concentration across a wide range of frequencies and electric field intensities (AC voltages) to determine their respective safe regions of operation and to gain an understanding about the failure mechanisms of this class of device. At frequencies of 10 kHz and below, the upper bound of operation is the degradation of electrodes due to electrochemical attack by chlorine overcoming the native platinum oxide passivation. At higher frequencies, 100 kHz and above, the dielectric loss and subsequent heating of the buffer will boil before the electrodes suffer observable damage, due to the slow irreversible reaction kinetics. Effective dielectrophoretic capture of small biological particles at these frequencies is limited, and heat/oxidative denaturation of target material are a major concern. A new class of smaller devices, ones capable of high throughput at voltages low enough to maintain the integrity of the platinum passivation layer, is needed to mitigate these fundamental limitations.

摘要

尽管微电子器件制造的进步已经实现了集成分析和诊断平台的新功能,但在即时护理样本制备方面仍存在明显的局限性。交流电动力学设备,特别是利用介电泳(DEP)的设备,已经显示出解决这些限制并允许在单个即时护理设备中实现样本到答案的潜力。然而,当直接处理全血或其他高电导率(~1 S/m)生物流体时,电极产生的剧烈电化学条件从根本上限制了设备的运行。在这项研究中,测试了基于铂丝的电极设备,该设备跨越圆形聚四氟乙烯(PTFE)井和带有溅射铂电极的平面微阵列设备,在不同浓度的等离子体和 PBS 缓冲液中,在很宽的频率和电场强度(交流电压)范围内进行测试,以确定各自的安全操作区域,并了解此类设备的失效机制。在 10 kHz 及以下的频率下,操作的上限是由于氯的电化学攻击而导致电极降解,从而克服了天然铂氧化物的钝化。在更高的频率下,100 kHz 及以上,由于缓冲液的介电损耗和随后的加热,电极会在观察到损坏之前沸腾,这是由于缓慢的不可逆反应动力学。在这些频率下,有效捕获小生物颗粒的介电泳受到限制,并且目标材料的热/氧化变性是一个主要问题。需要一类新的更小的设备,这些设备能够以足够低的电压实现高通量,以保持铂钝化层的完整性,从而减轻这些基本限制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验