Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, Massachusetts, USA.
Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland, USA.
J Am Med Inform Assoc. 2020 May 1;27(5):793-797. doi: 10.1093/jamia/ocaa028.
The US Food and Drug Administration (FDA) Sentinel System uses a distributed data network, a common data model, curated real-world data, and distributed analytic tools to generate evidence for FDA decision-making. Sentinel system needs include analytic flexibility, transparency, and reproducibility while protecting patient privacy. Based on over a decade of experience, a critical system limitation is the inability to identify enough medical conditions of interest in observational data to a satisfactory level of accuracy. Improving the system's ability to use computable phenotypes will require an "all of the above" approach that improves use of electronic health data while incorporating the growing array of complementary electronic health record data sources. FDA recently funded a Sentinel System Innovation Center and a Community Building and Outreach Center that will provide a platform for collaboration across disciplines to promote better use of real-world data for decision-making.
美国食品和药物管理局(FDA)监测系统利用分布式数据网络、通用数据模型、经整理的真实世界数据和分布式分析工具来生成 FDA 决策的证据。监测系统的需求包括分析灵活性、透明度和可重复性,同时保护患者隐私。基于十多年的经验,一个关键的系统限制是无法在观察性数据中以令人满意的准确度识别出足够数量的相关医疗条件。为了提高系统使用可计算表型的能力,需要采取“多管齐下”的方法,在纳入日益增多的一系列互补电子健康记录数据源的同时,改进对电子健康数据的使用。FDA 最近为监测系统创新中心和社区建设与外联中心提供资金,这将为跨学科合作提供一个平台,以促进更好地利用真实世界数据进行决策。