Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; email:
Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Annu Rev Biomed Data Sci. 2024 Aug;7(1):179-199. doi: 10.1146/annurev-biodatasci-122220-115746. Epub 2024 Jul 24.
The progress of precision medicine research hinges on the gathering and analysis of extensive and diverse clinical datasets. With the continued expansion of modalities, scales, and sources of clinical datasets, it becomes imperative to devise methods for aggregating information from these varied sources to achieve a comprehensive understanding of diseases. In this review, we describe two important approaches for the analysis of diverse clinical datasets, namely the centralized model and federated model. We compare and contrast the strengths and weaknesses inherent in each model and present recent progress in methodologies and their associated challenges. Finally, we present an outlook on the opportunities that both models hold for the future analysis of clinical data.
精准医学研究的进展取决于广泛而多样的临床数据集的收集和分析。随着临床数据集的模态、规模和来源的不断扩展,必须设计从这些不同来源汇总信息的方法,以全面了解疾病。在这篇综述中,我们描述了分析多样化临床数据集的两种重要方法,即集中式模型和联邦式模型。我们比较和对比了每个模型固有的优缺点,并介绍了方法学的最新进展及其相关挑战。最后,我们展望了这两种模型在未来临床数据分析中的机遇。