Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, CP 97205 Mérida, Yucatán, Mexico; Universidad Aeronáutica en Querétaro, Subdirección de Técnico Superior Universitario, Carretera estatal 200, Querétaro Tequisquiapan, No. 22154, CP 76270 Colón, Querétaro, Mexico.
Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, CP 97205 Mérida, Yucatán, Mexico; CONACYT-Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, CP 97205 Mérida, Yucatán, Mexico.
Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110748. doi: 10.1016/j.msec.2020.110748. Epub 2020 Feb 19.
Disruption of the continuous cutaneous membrane in the integumentary system is considered a health problem of high cost for any nation. Several attempts have been made for developing skin substitutes in order to restore injured tissue including autologous implants and the use of scaffolds based on synthetic and natural materials. Current biomaterials used for skin tissue repair include several scaffold matrices types, synthetic or natural, absorbable, degradable or non-degradable polymers, porous or dense scaffolds, and cells capsulated in hydrogels or spheroids systems so forth. These materials have advantages and disadvantages and its use will depend on the desired application. Recently, marine organisms such as jellyfish have attracted renewed interest, because both its composition and structure resemble the architecture of human dermic tissue. In this context, the present study aims to generate scaffolds from Cassiopea andromeda (C. andromeda), with application in skin tissue engineering, using a decellularization process. The obtained scaffold was studied by infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential scanning calorimetry analysis (DSC), and scanning electron microscopy (SEM). Crystal violet staining and DNA quantification assessed decellularization effectiveness while the biocompatibility of scaffold was determined with human dermic fibroblasts. Results indicated that the decellularization process reduce native cell population leading to 70% reduction in DNA content. In addition, SEM showed that the macro and microstructure of the collagen I-based scaffold were preserved allowing good adhesion and proliferation of human dermic fibroblasts. The C. andromeda scaffold mimics human skin and therefore represents great potential for skin tissue engineering.
皮肤系统中连续皮肤膜的破坏被认为是任何国家的高成本健康问题。为了恢复受损组织,已经进行了多次开发皮肤替代物的尝试,包括自体植入物和使用基于合成和天然材料的支架。目前用于皮肤组织修复的生物材料包括几种支架基质类型,包括可吸收、可降解或不可降解的合成或天然聚合物、多孔或致密支架,以及包封在水凝胶或球体系统中的细胞等。这些材料有优点也有缺点,其用途将取决于所需的应用。最近,海洋生物如水母重新引起了人们的兴趣,因为它们的组成和结构类似于人类真皮组织的结构。在这种情况下,本研究旨在使用脱细胞化过程从海月水母(Cassiopea andromeda)中生成支架,应用于皮肤组织工程。通过红外光谱(FT-IR)、热重分析(TGA)、差示扫描量热分析(DSC)和扫描电子显微镜(SEM)研究获得的支架。结晶紫染色和 DNA 定量评估脱细胞化效果,而支架的生物相容性则用人真皮成纤维细胞进行评估。结果表明,脱细胞化过程减少了天然细胞群,导致 DNA 含量减少 70%。此外,SEM 显示,基于胶原蛋白 I 的支架的宏观和微观结构得以保留,允许人真皮成纤维细胞良好地粘附和增殖。C. andromeda 支架模拟人体皮肤,因此在皮肤组织工程中有很大的应用潜力。