Suppr超能文献

昆虫翅膀在气味引导的航空导航中的双重功能。

Dual functions of insect wings in an odor-guided aeronautic navigation.

作者信息

Li Chengyu, Dong Haibo, Zhao Kai

机构信息

Department of Mechanical Engineering, Villanova University, Villanova, PA, USA.

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA.

出版信息

J Fluids Eng. 2020 Mar 1;142(3):030902. doi: 10.1115/1.4045946. Epub 2020 Feb 10.

Abstract

Insects can detect and locate distant odor sources (food, mate, etc.) by tracking odor plumes, which is key to their survival. During an odor-guided navigation, flapping wings have been speculated to actively draw odorants to the antennae and enhance olfactory sensitivity. Utilizing an in-house computational fluid dynamics solver, we have quantified the odor plume structures of a fruit fly in a forward flight motion and have confirmed that the flapping wings induce a strong vortex flow over the insect's head, thereby enhancing the odor mass flux around the antennae (by ~1.8 times). To further understand the function of different wing area in terms of aerodynamics and olfaction, we designed an altered fruit fly wing by removing its trailing-edge portion; subsequent simulations showed that this altered wing has an improved lift production but with significantly reduction of the induced odor mass flux. Contrary to the common belief that the wing shapes of an insect are optimized only for aerodynamic performance, our results suggest that, because both aerodynamic and olfactory functions are indispensable during the odor-guided navigation, insects may sacrifice some aerodynamic potential to enhance olfactory detection; and the shape and size of the wing may be a balance between the two functions. Furthermore, we found that higher wing beat frequency and wing reversal phase induce higher odor mass flux, while lower beat frequency and downstroke phase produce better lift coefficient, which indicates another balance between the two functions.

摘要

昆虫能够通过追踪气味羽流来探测和定位远处的气味源(食物、配偶等),这对它们的生存至关重要。在气味引导的导航过程中,人们推测扇动的翅膀会主动将气味分子吸引到触角上,从而提高嗅觉灵敏度。利用内部计算流体动力学求解器,我们对果蝇向前飞行时的气味羽流结构进行了量化,并证实扇动的翅膀会在昆虫头部上方诱导出强烈的涡流,从而增强触角周围的气味质量通量(约1.8倍)。为了进一步了解不同翅膀面积在空气动力学和嗅觉方面的功能,我们通过去除果蝇翅膀的后缘部分设计了一种改变后的翅膀;随后的模拟表明,这种改变后的翅膀升力有所提高,但诱导的气味质量通量显著降低。与普遍认为昆虫翅膀形状仅为空气动力学性能而优化的观点相反,我们的结果表明,由于在气味引导的导航过程中空气动力学和嗅觉功能都不可或缺,昆虫可能会牺牲一些空气动力学潜力来增强嗅觉探测;翅膀的形状和大小可能是这两种功能之间的一种平衡。此外,我们发现较高的翅膀拍打频率和翅膀反转相位会诱导更高的气味质量通量,而较低的拍打频率和向下冲程相位会产生更好的升力系数,这表明这两种功能之间的另一种平衡。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验