Suppr超能文献

用于选择性捕获铕(III)的高性能金属有机框架模板吸附剂

High-Performance Metal-Organic Framework-Templated Sorbent for Selective Eu(III) Capture.

作者信息

Hou Yun-Long, Diao Yingxue, Jia Qiangqiang, Chen Lizhuang

机构信息

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.

出版信息

ACS Omega. 2020 Mar 24;5(13):7392-7398. doi: 10.1021/acsomega.9b04419. eCollection 2020 Apr 7.

Abstract

A stable porous sorbent was achieved through the specific transformation of flexible thioalkyl groups and metal cluster sites in a zirconium MOF (metal-organic framework; Zr-) template. The target polymer combines sulfoxide/sulfone and phosphoric acid in a single framework, which was fully characterized by H-NMR, PXRD, IR, and elemental analysis. When employed as the heavy metal adsorbent, exhibit a remarkable Eu(III) sorption behavior, achieving both high chemical affinity ( = 10) and sorption capacity (the maximum Eu(III) sorption capacity reached 220 mg g at pH = 4.0 and = 298 K calculated from the Langmuir model). Recyclability and selectivity test of further prove that the sorbent is highly stable and effective for europium enrichment in the aqueous solution. This work takes focus on the introduction of multifunctional groups into a single polymeric framework in a feasible and environmentally friendly way and highlights the sorption efficiency for europium removal from the aqueous solution.

摘要

通过在锆基金属有机框架(Zr -)模板中对柔性硫代烷基和金属簇位点进行特定转化,获得了一种稳定的多孔吸附剂。目标聚合物在单一框架中结合了亚砜/砜和磷酸,通过氢核磁共振(H-NMR)、粉末X射线衍射(PXRD)、红外光谱(IR)和元素分析对其进行了全面表征。当用作重金属吸附剂时,表现出显著的铕(III)吸附行为,实现了高化学亲和力(K = 10)和吸附容量(根据朗缪尔模型计算,在pH = 4.0和T = 298 K时,最大铕(III)吸附容量达到220 mg g⁻¹)。对该吸附剂的可回收性和选择性测试进一步证明,该吸附剂对于水溶液中铕的富集具有高度稳定性和有效性。这项工作着重于以可行且环保的方式将多功能基团引入单一聚合物框架,并突出了从水溶液中去除铕的吸附效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bff/7144142/c94d5db6d591/ao9b04419_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验