Hasegawa Eietsu, Yoshioka Naoki, Tanaka Tsukasa, Nakaminato Taisei, Oomori Kazuki, Ikoma Tadaaki, Iwamoto Hajime, Wakamatsu Kan
Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan.
Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan.
ACS Omega. 2020 Mar 25;5(13):7651-7665. doi: 10.1021/acsomega.0c00509. eCollection 2020 Apr 7.
A debrominative oxygenation protocol has been developed for the conversion of α-bromo-α,α-dialkyl-substituted carbonyl compounds to their corresponding α-hydroxy analogues. For example, stirring a solution of α-bromoisobutyrophenone and 2-aryl-1,3-dimethylbenzimidazoline (BIH-Ar) at room temperature under an air atmosphere leads to the efficient formation of α-hydroperoxyisobutyrophenone, which can be converted to α-hydroxyisobutyrophenone using MeS reduction. In contrast, reaction of α-bromoacetophenone under the same conditions produces the α-hydrogenated product acetophenone. α-Keto-alkyl and benzimidazolyl radicals (BI-Ar), generated via dissociative electron transfer from BIH-Ar to α-bromoketone substrates, serve as key intermediates in the oxidation and reduction processes. The dramatic switch from hydrogenation to oxygenation is attributed to a steric effect of α-alkyl substituents, which causes hydrogen atom abstraction from sterically crowded BIH-Ar to α-keto-alkyl radicals to be slow and enable preferential reaction with molecular oxygen. Generation of the α-keto-alkyl radical and BI-Ar intermediates in these process and their sterically governed hydrogen atom transfer reactions are supported by results arising from DFT calculations. Moreover, an electron spin resonance study showed that visible light irradiation of phenyl benzimidazoline (BIH-Ph) in the presence of molecular oxygen produces the benzimidazolyl radical (BI-Ph). The addition of thiophenol into the reaction of α-bromoisobutyrophenone and BIH-Ph predominantly produced α-phenylthiolated isobutyrophenone even if a high concentration of molecular oxygen exists. Furthermore, the developed protocol was applied to other α-bromo-α,α-dialkylated carbonyl compounds.
已开发出一种脱溴氧化方法,用于将α-溴-α,α-二烷基取代的羰基化合物转化为相应的α-羟基类似物。例如,在室温下于空气氛围中搅拌α-溴代异丁酰苯和2-芳基-1,3-二甲基苯并咪唑啉(BIH-Ar)的溶液,可高效生成α-氢过氧化异丁酰苯,使用甲硫醚还原可将其转化为α-羟基异丁酰苯。相比之下,α-溴苯乙酮在相同条件下反应生成α-氢化产物苯乙酮。通过从BIH-Ar到α-溴代酮底物的解离电子转移产生的α-酮烷基和苯并咪唑基自由基(BI-Ar),是氧化和还原过程中的关键中间体。从氢化到氧化的显著转变归因于α-烷基取代基的空间效应,这使得从空间拥挤的BIH-Ar中夺取氢原子到α-酮烷基自由基的过程缓慢,并使得能够优先与分子氧反应。这些过程中α-酮烷基自由基和BI-Ar中间体的生成及其受空间控制的氢原子转移反应得到了密度泛函理论(DFT)计算结果的支持。此外,电子自旋共振研究表明,在分子氧存在下对苯基苯并咪唑啉(BIH-Ph)进行可见光照射会产生苯并咪唑基自由基(BI-Ph)。即使存在高浓度的分子氧,在α-溴代异丁酰苯与BIH-Ph的反应中加入苯硫酚,主要产物也是α-苯基硫代异丁酰苯。此外,所开发的方法还应用于其他α-溴-α,α-二烷基化羰基化合物。