Suppr超能文献

CAD-RADS:突破极限。

CAD-RADS: Pushing the Limits.

机构信息

From the Department of Radiology, Division of Cardiothoracic Imaging, UT Southwestern Medical Center, Dallas, Tex (A.C., P. Ranganath, H.G., S.A., P. Rajiah); Imaging and Diagnosis Center, Guadalajara, Mexico (H.G.); and Department of Radiology, University of Chicago Medical Center, Chicago, Ill (L.L.).

出版信息

Radiographics. 2020 May-Jun;40(3):629-652. doi: 10.1148/rg.2020190164. Epub 2020 Apr 10.

Abstract

Coronary CT angiography is now established as the first-line diagnostic imaging test to exclude coronary artery disease (CAD) in the population at low to intermediate risk. Wide variability exists in both the reporting of coronary CT angiography and the interpretation of these reports by referring physicians. The CAD Reporting and Data System (CAD-RADS) is sponsored by multiple societies and is a collaborative effort to provide standard classification of CAD, which is then integrated into patient clinical care. The main goals of the CAD-RADS are to decrease variability among readers; enhance communication between interpreting and referring clinicians, allowing collaborative determination of the best course of patient care; and generate consistent data for auditing, data mining, quality improvement, research, and education. There are several scenarios in which the CAD-RADS guidelines are ambiguous or do not provide definite recommendations for further management of CAD. The authors discuss the CAD-RADS categories and modifiers, highlight a variety of complex or ambiguous scenarios, and provide recommendations for managing these scenarios. RSNA, 2020 See discussion on this article by Aviram and Wolak.

摘要

冠状动脉 CT 血管造影术现在已被确立为低危至中危人群排除冠状动脉疾病(CAD)的一线诊断影像学检查方法。在冠状动脉 CT 血管造影术的报告和参考医师对这些报告的解读中,均存在广泛的变异性。CAD 报告和数据系统(CAD-RADS)由多个学会赞助,是一项旨在提供 CAD 标准分类的合作努力,然后将其纳入患者的临床护理中。CAD-RADS 的主要目标是减少读者之间的变异性;增强解释者和参考临床医生之间的沟通,允许共同确定患者最佳护理方案;并为审核、数据挖掘、质量改进、研究和教育生成一致的数据。CAD-RADS 指南有几种情况比较模糊,或者没有为 CAD 的进一步管理提供明确的建议。作者讨论了 CAD-RADS 类别和修饰符,重点介绍了多种复杂或模糊的情况,并为这些情况的处理提供了建议。RSNA,2020 请参阅 Aviram 和 Wolak 对本文的讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验