Suppr超能文献

CAD-RADS™ 2.0 - 2022冠状动脉疾病——报告与数据系统 心血管计算机断层扫描学会(SCCT)、美国心脏病学会(ACC)、美国放射学会(ACR)及北美心血管影像学会(NASCI)的专家共识文件

CAD-RADS™ 2.0 - 2022 Coronary Artery Disease - Reporting and Data System An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR) and the North America Society of Cardiovascular Imaging (NASCI).

作者信息

Cury Ricardo C, Leipsic Jonathon, Abbara Suhny, Achenbach Stephan, Berman Daniel, Bittencourt Marcio, Budoff Matthew, Chinnaiyan Kavitha, Choi Andrew D, Ghoshhajra Brian, Jacobs Jill, Koweek Lynne, Lesser John, Maroules Christopher, Rubin Geoffrey D, Rybicki Frank J, Shaw Leslee J, Williams Michelle C, Williamson Eric, White Charles S, Villines Todd C, Blankstein Ron

机构信息

Miami Cardiac and Vascular Institute and Baptist Health of South Florida, 8900 N Kendall Drive, Miami FL, 33176, USA.

Department of Radiology, University of British Columbia, Canada.

出版信息

Radiol Cardiothorac Imaging. 2022 Sep 22;4(5):e220183. doi: 10.1148/ryct.220183. eCollection 2022 Oct.

Abstract

Coronary Artery Disease Reporting and Data System (CAD-RADS) was created to standardize reporting system for patients undergoing coronary CT angiography (CCTA) and to guide possible next steps in patient management. The goal of this updated 2022 CAD-RADS 2.0 is to improve the initial reporting system for CCTA by considering new technical developments in Cardiac CT, including data from recent clinical trials and new clinical guidelines. The updated CAD-RADS classification will follow an established framework of stenosis, plaque burden, and modifiers, which will include assessment of lesion-specific ischemia using CT fractional-flow-reserve (CT-FFR) or myocardial CT perfusion (CTP), when performed. Similar to the method used in the original CAD-RADS version, the determinant for stenosis severity classification will be the most severe coronary artery luminal stenosis on a per-patient basis, ranging from CAD-RADS 0 (zero) for absence of any plaque or stenosis to CAD-RADS 5 indicating the presence of at least one totally occluded coronary artery. Given the increasing data supporting the prognostic relevance of coronary plaque burden, this document will provide various methods to estimate and report total plaque burden. The addition of P1 to P4 descriptors are used to denote increasing categories of plaque burden. The main goal of CAD-RADS, which should always be interpreted together with the impression found in the report, remains to facilitate communication of test results with referring physicians along with suggestions for subsequent patient management. In addition, CAD-RADS will continue to provide a framework of standardization that may benefit education, research, peer-review, artificial intelligence development, clinical trial design, population health and quality assurance with the ultimate goal of improving patient care. Coronary Artery Disease, Coronary CTA, CAD-RADS, Reporting and Data System, Stenosis Severity, Report Standardization Terminology, Plaque Burden, Ischemia This article is published synchronously in , and . © 2022 Society of Cardiovascular Computed Tomography. Published by RSNA with permission.

摘要

冠状动脉疾病报告和数据系统(CAD-RADS)旨在规范接受冠状动脉CT血管造影(CCTA)患者的报告系统,并指导患者管理的后续可能步骤。此次更新的2022版CAD-RADS 2.0的目标是通过考虑心脏CT的新技术发展来改进CCTA的初始报告系统,包括来自近期临床试验的数据和新的临床指南。更新后的CAD-RADS分类将遵循既定的狭窄、斑块负荷和修饰符框架,其中将包括在进行CT血流储备分数(CT-FFR)或心肌CT灌注(CTP)检查时对病变特异性缺血的评估。与原始CAD-RADS版本中使用的方法类似,狭窄严重程度分类的决定因素将是每位患者最严重的冠状动脉管腔狭窄,范围从无任何斑块或狭窄的CAD-RADS 0(零)到表示至少有一条冠状动脉完全闭塞的CAD-RADS 5。鉴于越来越多的数据支持冠状动脉斑块负荷的预后相关性,本文将提供多种估计和报告总斑块负荷的方法。添加P1到P4描述符用于表示斑块负荷增加的类别。CAD-RADS的主要目标始终应与报告中的影像表现一起解读,仍然是促进与转诊医生交流检查结果以及为后续患者管理提供建议。此外,CAD-RADS将继续提供一个标准化框架,这可能有益于教育、研究、同行评审、人工智能开发、临床试验设计、人群健康和质量保证,最终目标是改善患者护理。冠状动脉疾病、冠状动脉CTA、CAD-RADS、报告和数据系统、狭窄严重程度、报告标准化术语、斑块负荷、缺血 本文同时发表于 和 。© 2022心血管计算机断层扫描学会。经RSNA许可出版。

相似文献

引用本文的文献

4
Utility of Cardiac CT for Cardiomyopathy Phenotyping.心脏CT在心肌病表型分析中的应用
Tomography. 2025 Mar 20;11(3):39. doi: 10.3390/tomography11030039.

本文引用的文献

4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验