Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, USA.
Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA.
Protein Sci. 2020 Jun;29(6):1524-1534. doi: 10.1002/pro.3869. Epub 2020 May 2.
Ca /calmodulin-dependent protein kinase II (CaMKII) is a Ser/Thr kinase necessary for long-term memory formation and other Ca -dependent signaling cascades such as fertilization. Here, we investigated the stability of CaMKIIα using a combination of differential scanning calorimetry (DSC), X-ray crystallography, and mass photometry (MP). The kinase domain has a low thermal stability (apparent T = 36°C), which is slightly stabilized by ATP/MgCl binding (apparent T = 40°C) and significantly stabilized by regulatory segment binding (apparent T = 60°C). We crystallized the kinase domain of CaMKII bound to p-coumaric acid in the active site. This structure reveals solvent-exposed hydrophobic residues in the substrate-binding pocket, which are normally buried in the autoinhibited structure when the regulatory segment is present. This likely accounts for the large stabilization that we observe in DSC measurements comparing the kinase alone with the kinase plus regulatory segment. The hub domain alone is extremely stable (apparent T ~ 90°C), and the holoenzyme structure has multiple unfolding transitions ranging from ~60°C to 100°C. Using MP, we compared a CaMKIIα holoenzyme with different variable linker regions and determined that the dissociation of both these holoenzymes occurs at a higher concentration (is less stable) compared with the hub domain alone. We conclude that within the context of the holoenzyme structure, the kinase domain is stabilized, whereas the hub domain is destabilized. These data support a model where domains within the holoenzyme interact.
钙/钙调蛋白依赖性蛋白激酶 II(CaMKII)是一种丝氨酸/苏氨酸激酶,对于长时程记忆的形成以及其他钙依赖性信号级联反应(如受精)是必需的。在这里,我们使用差示扫描量热法(DSC)、X 射线晶体学和质量光度法(MP)相结合的方法研究了 CaMKIIα 的稳定性。激酶结构域的热稳定性较低(表观 T = 36°C),ATP/MgCl 结合略微稳定(表观 T = 40°C),调节段结合显著稳定(表观 T = 60°C)。我们结晶了与 p-香豆酸结合的 CaMKII 激酶结构域,该结构揭示了活性位点中溶剂暴露的疏水性残基,当调节段存在时,这些残基通常被自动抑制结构所掩盖。这可能解释了我们在 DSC 测量中观察到的与激酶单独相比,激酶与调节段结合时的大稳定化作用。单独的中心结构域非常稳定(表观 T ~ 90°C),全酶结构有多个从 ~60°C 到 100°C 的展开转变。使用 MP,我们比较了具有不同可变连接区的 CaMKIIα 全酶,并确定与单独的中心结构域相比,这两种全酶的解离发生在更高的浓度(不太稳定)。我们得出结论,在全酶结构的背景下,激酶结构域被稳定化,而中心结构域被去稳定化。这些数据支持一个模型,即全酶结构内的结构域相互作用。