Department of Computer Science, Faculty of Engineering Sciences, University College London, London, UK.
Department of Paediatrics, College of Medicine University of Ibadan, University College Hospital, Ibadan, Nigeria.
Am J Hematol. 2020 Aug;95(8):883-891. doi: 10.1002/ajh.25827. Epub 2020 Apr 30.
Over 200 million malaria cases globally lead to half a million deaths annually. Accurate malaria diagnosis remains a challenge. Automated imaging processing approaches to analyze Thick Blood Films (TBF) could provide scalable solutions, for urban healthcare providers in the holoendemic malaria sub-Saharan region. Although several approaches have been attempted to identify malaria parasites in TBF, none have achieved negative and positive predictive performance suitable for clinical use in the west sub-Saharan region. While malaria parasite object detection remains an intermediary step in achieving automatic patient diagnosis, training state-of-the-art deep-learning object detectors requires the human-expert labor-intensive process of labeling a large dataset of digitized TBF. To overcome these challenges and to achieve a clinically usable system, we show a novel approach. It leverages routine clinical-microscopy labels from our quality-controlled malaria clinics, to train a Deep Malaria Convolutional Neural Network classifier (DeepMCNN) for automated malaria diagnosis. Our system also provides total Malaria Parasite (MP) and White Blood Cell (WBC) counts allowing parasitemia estimation in MP/μL, as recommended by the WHO. Prospective validation of the DeepMCNN achieves sensitivity/specificity of 0.92/0.90 against expert-level malaria diagnosis. Our approach PPV/NPV performance is of 0.92/0.90, which is clinically usable in our holoendemic settings in the densely populated metropolis of Ibadan. It is located within the most populous African country (Nigeria) and with one of the largest burdens of Plasmodium falciparum malaria. Our openly available method is of importance for strategies aimed to scale malaria diagnosis in urban regions where daily assessment of thousands of specimens is required.
全球有超过 2 亿例疟疾病例,每年导致 50 多万人死亡。准确诊断疟疾仍然是一个挑战。自动化成像处理方法来分析厚血膜(TBF)可以为全息流行疟疾的撒哈拉以南地区的城市医疗服务提供者提供可扩展的解决方案。尽管已经尝试了几种方法来识别 TBF 中的疟原虫,但没有一种方法能够达到适合在撒哈拉以南西部地区临床使用的阴性和阳性预测性能。虽然疟疾寄生虫目标检测仍然是实现自动患者诊断的中间步骤,但训练最先进的深度学习目标检测需要人工专家劳动密集型的过程来标记大量数字化 TBF 数据集。为了克服这些挑战并实现临床可用的系统,我们展示了一种新方法。它利用我们经过质量控制的疟疾诊所的常规临床显微镜标签,训练一个用于自动疟疾诊断的深度疟疾卷积神经网络分类器(DeepMCNN)。我们的系统还提供总疟疾寄生虫(MP)和白细胞(WBC)计数,允许根据世界卫生组织的建议估计 MP/μL 中的寄生虫血症。对 DeepMCNN 的前瞻性验证实现了针对专家级疟疾诊断的 0.92/0.90 的敏感性/特异性。我们的方法的 PPV/NPV 性能为 0.92/0.90,在我们的全息流行环境中在伊巴丹人口稠密的大都市中具有临床实用性。它位于人口最多的非洲国家(尼日利亚)之一,也是恶性疟原虫疟疾负担最大的国家之一。我们公开的方法对于旨在在需要每天评估数千个标本的城市地区扩大疟疾诊断策略具有重要意义。