文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自动化显微镜用于常规疟疾诊断:在秘鲁对吉姆萨染色血片的现场比较。

Automated microscopy for routine malaria diagnosis: a field comparison on Giemsa-stained blood films in Peru.

机构信息

Universidad Peruana Cayetano Heredia, Laboratorio de Malaria, Laboratiorios de Investigacion y Dessarrollo, Facultad de Ciencias y Filosofia, Av. Honorio Delgado 430 SMP, Lima, Peru.

Intellectual Ventures, 3150 139 AVE SE, Bellevue, WA, 98005, USA.

出版信息

Malar J. 2018 Sep 25;17(1):339. doi: 10.1186/s12936-018-2493-0.


DOI:10.1186/s12936-018-2493-0
PMID:30253764
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6157053/
Abstract

BACKGROUND: Microscopic examination of Giemsa-stained blood films remains a major form of diagnosis in malaria case management, and is a reference standard for research. However, as with other visualization-based diagnoses, accuracy depends on individual technician performance, making standardization difficult and reliability poor. Automated image recognition based on machine-learning, utilizing convolutional neural networks, offers potential to overcome these drawbacks. A prototype digital microscope device employing an algorithm based on machine-learning, the Autoscope, was assessed for its potential in malaria microscopy. Autoscope was tested in the Iquitos region of Peru in 2016 at two peripheral health facilities, with routine microscopy and PCR as reference standards. The main outcome measures include sensitivity and specificity of diagnosis of malaria from Giemsa-stained blood films, using PCR as reference. METHODS: A cross-sectional, observational trial was conducted at two peripheral primary health facilities in Peru. 700 participants were enrolled with the criteria: (1) age between 5 and 75 years, (2) history of fever in the last 3 days or elevated temperature on admission, (3) informed consent. The main outcome measures included sensitivity and specificity of diagnosis of malaria from Giemsa-stained blood films, using PCR as reference. RESULTS: At the San Juan clinic, sensitivity of Autoscope for diagnosing malaria was 72% (95% CI 64-80%), and specificity was 85% (95% CI 79-90%). Microscopy performance was similar to Autoscope, with sensitivity 68% (95% CI 59-76%) and specificity 100% (95% CI 98-100%). At San Juan, 85% of prepared slides had a minimum of 600 WBCs imaged, thus meeting Autoscope's design assumptions. At the second clinic, Santa Clara, the sensitivity of Autoscope was 52% (95% CI 44-60%) and specificity was 70% (95% CI 64-76%). Microscopy performance at Santa Clara was 42% (95% CI 34-51) and specificity was 97% (95% CI 94-99). Only 39% of slides from Santa Clara met Autoscope's design assumptions regarding WBCs imaged. CONCLUSIONS: Autoscope's diagnostic performance was on par with routine microscopy when slides had adequate blood volume to meet its design assumptions, as represented by results from the San Juan clinic. Autoscope's diagnostic performance was poorer than routine microscopy on slides from the Santa Clara clinic, which generated slides with lower blood volumes. Results of the study reflect both the potential for artificial intelligence to perform tasks currently conducted by highly-trained experts, and the challenges of replicating the adaptiveness of human thought processes.

摘要

背景:吉姆萨染色血片的显微镜检查仍然是疟疾病例管理中的主要诊断形式,也是研究的参考标准。然而,与其他基于可视化的诊断一样,准确性取决于个体技术员的表现,因此难以标准化,可靠性也较差。基于机器学习的自动图像识别技术,利用卷积神经网络,为克服这些缺点提供了潜力。一种名为 Autoscope 的基于机器学习算法的原型数字显微镜设备,用于评估其在疟疾显微镜检查中的潜力。Autoscope 于 2016 年在秘鲁伊基托斯地区的两家基层医疗机构进行了测试,以常规显微镜检查和 PCR 作为参考标准。主要的观察指标包括使用 PCR 作为参考时,从吉姆萨染色血片中诊断疟疾的敏感性和特异性。 方法:在秘鲁的两家基层初级医疗机构进行了一项横断面、观察性试验。符合以下标准的 700 名参与者被纳入研究:(1)年龄在 5 至 75 岁之间;(2)过去 3 天有发热史或入院时体温升高;(3)知情同意。主要的观察指标包括使用 PCR 作为参考时,从吉姆萨染色血片中诊断疟疾的敏感性和特异性。 结果:在圣胡安诊所,Autoscope 诊断疟疾的敏感性为 72%(95%CI 64-80%),特异性为 85%(95%CI 79-90%)。显微镜检查的性能与 Autoscope 相似,敏感性为 68%(95%CI 59-76%),特异性为 100%(95%CI 98-100%)。在圣胡安,85%的准备好的载玻片上至少有 600 个白细胞成像,因此符合 Autoscope 的设计假设。在第二家诊所,圣克拉拉,Autoscope 的敏感性为 52%(95%CI 44-60%),特异性为 70%(95%CI 64-76%)。圣克拉拉的显微镜检查结果为 42%(95%CI 34-51%),特异性为 97%(95%CI 94-99%)。只有 39%的圣克拉拉载玻片符合 Autoscope 关于白细胞成像的设计假设。 结论:当载玻片具有足够的血量以满足其设计假设时,Autoscope 的诊断性能与常规显微镜检查相当,这反映了圣胡安诊所的结果。Autoscope 在圣克拉拉诊所的载玻片上的诊断性能比常规显微镜检查差,因为圣克拉拉诊所的载玻片产生的血量较低。研究结果反映了人工智能执行目前由高技能专家执行的任务的潜力,以及复制人类思维过程适应性的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/083183226c30/12936_2018_2493_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/7b05359684dd/12936_2018_2493_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/620c03041407/12936_2018_2493_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/2c0fedda94ed/12936_2018_2493_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/aff991c9273d/12936_2018_2493_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/67e9709ef93c/12936_2018_2493_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/083183226c30/12936_2018_2493_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/7b05359684dd/12936_2018_2493_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/620c03041407/12936_2018_2493_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/2c0fedda94ed/12936_2018_2493_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/aff991c9273d/12936_2018_2493_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/67e9709ef93c/12936_2018_2493_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e4/6157053/083183226c30/12936_2018_2493_Fig6_HTML.jpg

相似文献

[1]
Automated microscopy for routine malaria diagnosis: a field comparison on Giemsa-stained blood films in Peru.

Malar J. 2018-9-25

[2]
Comparison of rapid diagnostic test Plasmotec Malaria-3, microscopy, and quantitative real-time PCR for diagnoses of Plasmodium falciparum and Plasmodium vivax infections in Mimika Regency, Papua, Indonesia.

Malar J. 2015-3-5

[3]
Field evaluation of the diagnostic performance of EasyScan GO: a digital malaria microscopy device based on machine-learning.

Malar J. 2022-4-12

[4]
Evaluation of the performance of CareStart Malaria Pf/Pv Combo rapid diagnostic test for the diagnosis of malaria in Jimma, southwestern Ethiopia.

Acta Trop. 2009-12-11

[5]
Diagnostic performance of CellaVision DM96 for Plasmodium vivax and Plasmodium falciparum screening in peripheral blood smears.

Acta Trop. 2019-5

[6]
Performance of ParaHit and OptiMAL tests in the diagnosis of malaria in Mwanza, north-western Tanzania.

Tanzan J Health Res. 2011-1

[7]
Differential Diagnosis of Malaria on Truelab Uno®, a Portable, Real-Time, MicroPCR Device for Point-Of-Care Applications.

PLoS One. 2016-1-19

[8]
High rate of detection of mixed infections of Plasmodium vivax and Plasmodium falciparum in South-East of Iran, using nested PCR.

Parasitol Int. 2007-3

[9]
Comparison of microscopical examination and semi-nested multiplex polymerase chain reaction in diagnosis of Plasmodium falciparum and P. vivax.

East Mediterr Health J. 2011-1

[10]
Distribution of Plasmodium species and assessment of performance of diagnostic tools used during a malaria survey in Southern and Western Provinces of Zambia.

Malar J. 2019-4-11

引用本文的文献

[1]
Enhanced detection of malaria infected red blood cells through phase driven classification.

Sci Rep. 2025-8-21

[2]
Computer Viewing Model for Classification of Erythrocytes Infected with spp. Applied to Malaria Diagnosis Using Optical Microscope.

Medicina (Kaunas). 2025-5-21

[3]
Evaluation of an Artificial Intelligence-Based Tool and a Universal Low-Cost Robotized Microscope for the Automated Diagnosis of Malaria.

Int J Environ Res Public Health. 2024-12-31

[4]
Identification of veterinary and medically important blood parasites using contrastive loss-based self-supervised learning.

Vet World. 2024-11

[5]
Diagnostic accuracy of an automated microscope solution (miLab™) in detecting malaria parasites in symptomatic patients at point-of-care in Sudan: a case-control study.

Malar J. 2024-6-28

[6]
Exploring the Impact of Batch Size on Deep Learning Artificial Intelligence Models for Malaria Detection.

Cureus. 2024-5-13

[7]
Evaluating Plasmodium falciparum automatic detection and parasitemia estimation: A comparative study on thin blood smear images.

PLoS One. 2024

[8]
A digital microscope for the diagnosis of Plasmodium falciparum and Plasmodium vivax, including P. falciparum with hrp2/hrp3 deletion.

PLOS Glob Public Health. 2024-5-20

[9]
Current Status of Malaria Control and Elimination in Africa: Epidemiology, Diagnosis, Treatment, Progress and Challenges.

J Epidemiol Glob Health. 2024-9

[10]
Automatic patient-level recognition of four species on thin blood smear by a real-time detection transformer (RT-DETR) object detection algorithm: a proof-of-concept and evaluation.

Microbiol Spectr. 2024-2-6

本文引用的文献

[1]
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.

Sensors (Basel). 2018-2-8

[2]
Image analysis and machine learning for detecting malaria.

Transl Res. 2018-1-12

[3]
Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner.

J Biophotonics. 2018-3

[4]
A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium falciparum candidate areas in digitized blood smears.

PLoS One. 2014-8-21

[5]
An automatic vision-based malaria diagnosis system.

J Microsc. 2013-4-2

[6]
A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests.

PLoS One. 2010-1-25

[7]
Assessing agreement between malaria slide density readings.

Malar J. 2010-1-4

[8]
Computer vision for microscopy diagnosis of malaria.

Malar J. 2009-7-13

[9]
Evaluation of the SD FK70 malaria Ag Plasmodium vivax rapid diagnostic test in a non-endemic setting.

Malar J. 2009-6-11

[10]
A novel semi-automatic image processing approach to determine Plasmodium falciparum parasitemia in Giemsa-stained thin blood smears.

BMC Cell Biol. 2008-3-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索