Albuquerque Carina, Henriques Roberto, Castelli Mauro
NOVA Information Management School, Lisboa, Portugal.
Heliyon. 2024 Dec 11;11(1):e41137. doi: 10.1016/j.heliyon.2024.e41137. eCollection 2025 Jan 15.
Over the past decade, Deep Learning (DL) techniques have demonstrated remarkable advancements across various domains, driving their widespread adoption. Particularly in medical image analysis, DL received greater attention for tasks like image segmentation, object detection, and classification. This paper provides an overview of DL-based object recognition in medical images, exploring recent methods and emphasizing different imaging techniques and anatomical applications. Utilizing a meticulous quantitative and qualitative analysis following PRISMA guidelines, we examined publications based on citation rates to explore into the utilization of DL-based object detectors across imaging modalities and anatomical domains. Our findings reveal a consistent rise in the utilization of DL-based object detection models, indicating unexploited potential in medical image analysis. Predominantly within Medicine and Computer Science domains, research in this area is most active in the US, China, and Japan. Notably, DL-based object detection methods have gotten significant interest across diverse medical imaging modalities and anatomical domains. These methods have been applied to a range of techniques including CR scans, pathology images, and endoscopic imaging, showcasing their adaptability. Moreover, diverse anatomical applications, particularly in digital pathology and microscopy, have been explored. The analysis underscores the presence of varied datasets, often with significant discrepancies in size, with a notable percentage being labeled as private or internal, and with prospective studies in this field remaining scarce. Our review of existing trends in DL-based object detection in medical images offers insights for future research directions. The continuous evolution of DL algorithms highlighted in the literature underscores the dynamic nature of this field, emphasizing the need for ongoing research and fitted optimization for specific applications.
在过去十年中,深度学习(DL)技术在各个领域都取得了显著进展,推动了它们的广泛应用。特别是在医学图像分析中,深度学习在图像分割、目标检测和分类等任务中受到了更多关注。本文概述了基于深度学习的医学图像目标识别,探讨了最新方法,并强调了不同的成像技术和解剖学应用。我们按照PRISMA指南进行了细致的定量和定性分析,根据引用率对出版物进行了审查,以探究基于深度学习的目标检测器在各种成像模态和解剖学领域的应用情况。我们的研究结果显示,基于深度学习的目标检测模型的应用持续增加,这表明医学图像分析中仍有未被挖掘的潜力。该领域的研究主要集中在医学和计算机科学领域,美国、中国和日本最为活跃。值得注意的是,基于深度学习的目标检测方法在各种医学成像模态和解剖学领域都引起了极大关注。这些方法已应用于一系列技术,包括CR扫描、病理图像和内镜成像,展示了它们的适应性。此外,还探索了多种解剖学应用,特别是在数字病理学和显微镜检查方面。分析强调了存在各种不同的数据集,其大小往往差异很大,其中相当一部分被标记为私有或内部数据集,并且该领域的前瞻性研究仍然很少。我们对基于深度学习的医学图像目标检测的现有趋势进行的综述为未来的研究方向提供了见解。文献中强调的深度学习算法的不断发展突出了该领域的动态性质,强调了针对特定应用进行持续研究和适当优化的必要性。