Suppr超能文献

超分子 20nm 宽六边形网格的分子内和分子间自组装。

Intra- and intermolecular self-assembly of a 20-nm-wide supramolecular hexagonal grid.

机构信息

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Environmental Research at Great Bay, Guangzhou University, Guangzhou, China.

Department of Chemistry, University of South Florida, Tampa, FL, USA.

出版信息

Nat Chem. 2020 May;12(5):468-474. doi: 10.1038/s41557-020-0454-z. Epub 2020 Apr 13.

Abstract

For the past three decades, the coordination-driven self-assembly of three-dimensional structures has undergone rapid progress; however, parallel efforts to create large discrete two-dimensional architectures-as opposed to polymers-have met with limited success. The synthesis of metallo-supramolecular systems with well-defined shapes and sizes in the range of 10-100 nm remains challenging. Here we report the construction of a series of giant supramolecular hexagonal grids, with diameters on the order of 20 nm and molecular weights greater than 65 kDa, through a combination of intra- and intermolecular metal-mediated self-assembly steps. The hexagonal intermediates and the resulting self-assembled grid architectures were imaged at submolecular resolution by scanning tunnelling microscopy. Characterization (including by scanning tunnelling spectroscopy) enabled the unambiguous atomic-scale determination of fourteen hexagonal grid isomers.

摘要

在过去的三十年中,基于协调驱动的三维结构自组装取得了快速进展;然而,与之相反的是,人们在构建离散的二维结构方面的努力却收效甚微,仅限于聚合物。在 10-100nm 的范围内,合成具有明确形状和尺寸的金属超分子体系仍然具有挑战性。在这里,我们报告了一系列巨型超分子六方网格的构建,其直径约为 20nm,分子量大于 65kDa,这是通过分子内和分子间金属介导的自组装步骤相结合实现的。通过扫描隧道显微镜,在亚分子分辨率下对六方中间体和所得的自组装网格结构进行了成像。通过(包括扫描隧道光谱法)的表征,能够在原子尺度上明确确定十四个六方网格异构体。

相似文献

1
Intra- and intermolecular self-assembly of a 20-nm-wide supramolecular hexagonal grid.
Nat Chem. 2020 May;12(5):468-474. doi: 10.1038/s41557-020-0454-z. Epub 2020 Apr 13.
2
Anion-Coordination-Driven Assembly.
Acc Chem Res. 2022 Nov 15;55(22):3218-3229. doi: 10.1021/acs.accounts.2c00435. Epub 2022 Nov 4.
3
Amino Acid Coordinated Self-Assembly.
Chemistry. 2018 Jan 19;24(4):755-761. doi: 10.1002/chem.201704032. Epub 2017 Nov 28.
5
The Promise of Self-Assembled 3D Supramolecular Coordination Complexes for Biomedical Applications.
Inorg Chem. 2017 Dec 18;56(24):14715-14729. doi: 10.1021/acs.inorgchem.7b02599. Epub 2017 Nov 27.
6
Tetraphenylethene-Based Supramolecular Coordination Frameworks with Aggregation-Induced Emission for an Artificial Light-Harvesting System.
ACS Appl Mater Interfaces. 2020 May 20;12(20):22630-22639. doi: 10.1021/acsami.0c04917. Epub 2020 May 7.
8
From terpyridine-based assemblies to metallo-supramolecular polyelectrolytes (MEPEs).
Adv Colloid Interface Sci. 2014 May;207:107-20. doi: 10.1016/j.cis.2013.12.010. Epub 2013 Dec 27.
9
Hierarchical Assemblies of Supramolecular Coordination Complexes.
Acc Chem Res. 2018 Sep 18;51(9):2047-2063. doi: 10.1021/acs.accounts.8b00233. Epub 2018 Aug 22.

引用本文的文献

2
Exploring diverse supramolecular tessellation through hierarchical assemblies of nonalternant nanographene.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2426059122. doi: 10.1073/pnas.2426059122. Epub 2025 May 30.
3
Unravelling the Atomic Structure of a Metal-Covalent Organic Framework Assembled from Ruthenium Metalloligands.
Adv Mater. 2025 Apr;37(13):e2502155. doi: 10.1002/adma.202502155. Epub 2025 Feb 19.
4
High-order layered self-assembled multicavity metal--organic capsules and anti-cooperative host-multi-guest chemistry.
Chem Sci. 2024 May 8;15(23):8913-8921. doi: 10.1039/d4sc01204f. eCollection 2024 Jun 12.
5
Giant oligomeric porous cage-based molecules.
Chem Sci. 2024 Apr 30;15(21):7992-7998. doi: 10.1039/d4sc01974a. eCollection 2024 May 29.
6
Surface-supported metal-organic frameworks with geometric topological diversity via scanning tunneling microscopy.
iScience. 2024 Mar 4;27(4):109392. doi: 10.1016/j.isci.2024.109392. eCollection 2024 Apr 19.
7
Ion Mobility Mass Spectrometry for Large Synthetic Molecules: Expanding the Analytical Toolbox.
J Am Chem Soc. 2024 Apr 3;146(13):8800-8819. doi: 10.1021/jacs.4c00354. Epub 2024 Mar 18.
8
Characterization of just one atom using synchrotron X-rays.
Nature. 2023 Jun;618(7963):69-73. doi: 10.1038/s41586-023-06011-w. Epub 2023 May 31.
10
Aggregation-Induced Emission Metallocuboctahedra for White Light Devices.
JACS Au. 2022 Dec 9;2(12):2809-2820. doi: 10.1021/jacsau.2c00568. eCollection 2022 Dec 26.

本文引用的文献

1
Self-assembly of tetravalent Goldberg polyhedra from 144 small components.
Nature. 2016 Dec 21;540(7634):563-566. doi: 10.1038/nature20771.
2
Self-assembly of polycyclic supramolecules using linear metal-organic ligands.
Nat Commun. 2018 Nov 1;9(1):4575. doi: 10.1038/s41467-018-07045-9.
3
Synthetic β-Barrel by Metal-Induced Folding and Assembly.
J Am Chem Soc. 2018 Jul 18;140(28):8644-8647. doi: 10.1021/jacs.8b04284. Epub 2018 Jul 9.
4
Supramolecular Kandinsky circles with high antibacterial activity.
Nat Commun. 2018 May 8;9(1):1815. doi: 10.1038/s41467-018-04247-z.
7
Stereochemical plasticity modulates cooperative binding in a CoL cuboctahedron.
Nat Chem. 2017 Sep;9(9):903-908. doi: 10.1038/nchem.2758. Epub 2017 Apr 10.
8
Supersnowflakes: Stepwise Self-Assembly and Dynamic Exchange of Rhombus Star-Shaped Supramolecules.
J Am Chem Soc. 2017 Jun 21;139(24):8174-8185. doi: 10.1021/jacs.7b01326. Epub 2017 Jun 8.
9
Braiding a molecular knot with eight crossings.
Science. 2017 Jan 13;355(6321):159-162. doi: 10.1126/science.aal1619.
10
Allosteric initiation and regulation of catalysis with a molecular knot.
Science. 2016 Jun 24;352(6293):1555-9. doi: 10.1126/science.aaf3673.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验