INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
Chemistry Department, Saarland University, 66123 Saarbrücken, Germany.
ACS Appl Mater Interfaces. 2020 May 6;12(18):20287-20294. doi: 10.1021/acsami.0c03903. Epub 2020 Apr 23.
The application of optical technologies in treating pathologies and monitoring disease states requires the development of soft, minimal invasive and implantable devices to deliver light to tissues inside the body. Here, we present soft and degradable optical waveguides from poly(d,l-lactide) and derived copolymers fabricated by extrusion printing in the desired dimensions and shapes. The obtained optical waveguides propagate VIS to NIR light in air and in tissue at penetration depths of tens of centimeters. Besides, the printed waveguides have elastomeric properties at body temperature and show softness and flexibility in the range relevant for implantable devices in soft organs. Printed waveguides were able to guide light across 8 cm tissue and activate photocleavage chemical reactions in a photoresponsive hydrogel (in vitro). The simplicity and flexibility of the fiber processing method and the optical and mechanical performance of the obtained waveguides exemplify how rational study of medically approved biomaterials can lead to useful inks for printing cost-effective and flexible optical components for potential use in medical contexts.
光学技术在治疗疾病和监测疾病状态中的应用需要开发柔软、微创和可植入的设备,以便将光传输到体内组织中。在这里,我们展示了由聚(D,L-丙交酯)及其衍生共聚物通过挤压印刷在所需尺寸和形状下制成的柔软且可降解的光学波导。所获得的光学波导在空气中和组织中传播 VIS 到 NIR 光,穿透深度可达数十厘米。此外,打印的波导在体温下具有弹性体特性,并在与软器官中可植入设备相关的范围内表现出柔软性和灵活性。打印的波导能够引导光穿过 8 厘米的组织,并在光响应水凝胶中激活光解化学(体外)。纤维处理方法的简单性和灵活性以及所获得的波导的光学和机械性能证明了对医学认可的生物材料的合理研究如何能够为潜在用于医学环境的低成本、灵活的光学组件的打印提供有用的墨水。