IEEE Trans Med Imaging. 2020 Oct;39(10):3079-3088. doi: 10.1109/TMI.2020.2986762. Epub 2020 Apr 9.
Ultrasound molecular imaging (UMI) is enabled by targeted microbubbles (MBs), which are highly reflective ultrasound contrast agents that bind to specific biomarkers. Distinguishing between adherent MBs and background signals can be challenging in vivo. The preferred preclinical technique is differential targeted enhancement (DTE), wherein a strong acoustic pulse is used to destroy MBs to verify their locations. However, DTE intrinsically cannot be used for real-time imaging and may cause undesirable bioeffects. In this work, we propose a simple 4-layer convolutional neural network to nondestructively detect adherent MB signatures. We investigated several types of input data to the network: "anatomy-mode" (fundamental frequency), "contrast-mode" (pulse-inversion harmonic frequency), or both, i.e., "dual-mode", using IQ channel signals, the channel sum, or the channel sum magnitude. Training and evaluation were performed on in vivo mouse tumor data and microvessel phantoms. The dual-mode channel signals yielded optimal performance, achieving a soft Dice coefficient of 0.45 and AUC of 0.91 in two test images. In a volumetric acquisition, the network best detected a breast cancer tumor, resulting in a generalized contrast-to-noise ratio (GCNR) of 0.93 and Kolmogorov-Smirnov statistic (KSS) of 0.86, outperforming both regular contrast mode imaging (GCNR = 0.76, KSS = 0.53) and DTE imaging (GCNR = 0.81, KSS = 0.62). Further development of the methodology is necessary to distinguish free from adherent MBs. These results demonstrate that neural networks can be trained to detect targeted MBs with DTE-like quality using nondestructive dual-mode data, and can be used to facilitate the safe and real-time translation of UMI to clinical applications.
超声分子成像(UMI)是通过靶向微泡(MBs)实现的,MBs 是高度反射的超声对比剂,可与特定的生物标志物结合。在体内区分贴壁 MBs 和背景信号可能具有挑战性。首选的临床前技术是差异靶向增强(DTE),其中使用强声脉冲破坏 MBs 以验证其位置。然而,DTE 本质上不能用于实时成像,并且可能引起不良的生物效应。在这项工作中,我们提出了一种简单的 4 层卷积神经网络,用于无损检测贴壁 MB 特征。我们研究了几种输入到网络的输入数据类型:“解剖模式”(基频)、“对比模式”(反转脉冲谐波频率)或两者,即使用 IQ 通道信号、通道总和或通道总和幅度的“双模式”。使用体内小鼠肿瘤数据和微血管体模进行训练和评估。双模式通道信号产生了最佳性能,在两幅测试图像中获得了 0.45 的软 Dice 系数和 0.91 的 AUC。在体积采集方面,该网络最佳地检测到乳腺癌肿瘤,导致广义对比度噪声比(GCNR)为 0.93 和 Kolmogorov-Smirnov 统计量(KSS)为 0.86,优于常规对比模式成像(GCNR = 0.76,KSS = 0.53)和 DTE 成像(GCNR = 0.81,KSS = 0.62)。需要进一步开发该方法学,以区分游离和贴壁 MBs。这些结果表明,神经网络可以使用无损双模式数据进行训练,以实现类似 DTE 的靶向 MBs 检测,并可用于促进 UMI 向临床应用的安全实时转化。