IEEE Trans Neural Syst Rehabil Eng. 2020 May;28(5):1117-1127. doi: 10.1109/TNSRE.2020.2985996. Epub 2020 Apr 6.
Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer interfaces (BCIs), for coping with variations among different subjects and/or tasks. This paper considers offline unsupervised cross-subject electroencephalogram (EEG) classification, i.e., we have labeled EEG trials from one or more source subjects, but only unlabeled EEG trials from the target subject. We propose a novel manifold embedded knowledge transfer (MEKT) approach, which first aligns the covariance matrices of the EEG trials in the Riemannian manifold, extracts features in the tangent space, and then performs domain adaptation by minimizing the joint probability distribution shift between the source and the target domains, while preserving their geometric structures. MEKT can cope with one or multiple source domains, and can be computed efficiently. We also propose a domain transferability estimation (DTE) approach to identify the most beneficial source domains, in case there are a large number of source domains. Experiments on four EEG datasets from two different BCI paradigms demonstrated that MEKT outperformed several state-of-the-art transfer learning approaches, and DTE can reduce more than half of the computational cost when the number of source subjects is large, with little sacrifice of classification accuracy.
迁移学习利用一个问题中的数据或知识来帮助解决另一个不同但相关的问题。它在脑机接口(BCI)中特别有用,可用于应对不同受试者和/或任务之间的变化。本文考虑离线无监督跨主体脑电图(EEG)分类,即我们有来自一个或多个源主体的标记 EEG 试验,但只有来自目标主体的未标记 EEG 试验。我们提出了一种新颖的流形嵌入知识迁移(MEKT)方法,该方法首先在黎曼流形中对齐 EEG 试验的协方差矩阵,在切空间中提取特征,然后通过最小化源域和目标域之间的联合概率分布转移来进行域自适应,同时保持它们的几何结构。MEKT 可以处理一个或多个源域,并且可以高效计算。我们还提出了一种域可转移性估计(DTE)方法来识别最有益的源域,以防存在大量源域。来自两个不同 BCI 范式的四个 EEG 数据集的实验表明,MEKT 优于几种最先进的迁移学习方法,并且当源主体数量较大时,DTE 可以减少一半以上的计算成本,而分类准确性几乎没有损失。