Xu Yilu, Huang Xin, Lan Quan
School of Software, Jiangxi Agricultural University, Nanchang, China.
Software College, Jiangxi Normal University, Nanchang, China.
Front Neurosci. 2021 Nov 3;15:779231. doi: 10.3389/fnins.2021.779231. eCollection 2021.
A motor imagery (MI) brain-computer interface (BCI) plays an important role in the neurological rehabilitation training for stroke patients. Electroencephalogram (EEG)-based MI BCI has high temporal resolution, which is convenient for real-time BCI control. Therefore, we focus on EEG-based MI BCI in this paper. The identification of MI EEG signals is always quite challenging. Due to high inter-session/subject variability, each subject should spend long and tedious calibration time in collecting amounts of labeled samples for a subject-specific model. To cope with this problem, we present a supervised selective cross-subject transfer learning (sSCSTL) approach which simultaneously makes use of the labeled samples from target and source subjects based on Riemannian tangent space. Since the covariance matrices representing the multi-channel EEG signals belong to the smooth Riemannian manifold, we perform the Riemannian alignment to make the covariance matrices from different subjects close to each other. Then, all aligned covariance matrices are converted into the Riemannian tangent space features to train a classifier in the Euclidean space. To investigate the role of unlabeled samples, we further propose semi-supervised and unsupervised versions which utilize the total samples and unlabeled samples from target subject, respectively. Sequential forward floating search (SFFS) method is executed for source selection. All our proposed algorithms transfer the labeled samples from most suitable source subjects into the feature space of target subject. Experimental results on two publicly available MI datasets demonstrated that our algorithms outperformed several state-of-the-art algorithms using small number of the labeled samples from target subject, especially for good target subjects.
运动想象(MI)脑机接口(BCI)在中风患者的神经康复训练中起着重要作用。基于脑电图(EEG)的MI BCI具有较高的时间分辨率,便于实时BCI控制。因此,本文聚焦于基于EEG的MI BCI。MI EEG信号的识别一直颇具挑战性。由于不同会话/受试者之间存在高度变异性,每个受试者都需要花费漫长且枯燥的校准时间来收集大量标记样本,以建立特定于受试者的模型。为解决这一问题,我们提出一种监督式选择性跨受试者迁移学习(sSCSTL)方法,该方法基于黎曼切线空间同时利用来自目标受试者和源受试者的标记样本。由于表示多通道EEG信号的协方差矩阵属于光滑的黎曼流形,我们进行黎曼对齐以使来自不同受试者的协方差矩阵彼此接近。然后,将所有对齐后的协方差矩阵转换为黎曼切线空间特征,以便在欧几里得空间中训练分类器。为研究未标记样本的作用,我们进一步提出了半监督和无监督版本,分别利用来自目标受试者的全部样本和未标记样本。执行顺序前向浮动搜索(SFFS)方法进行源选择。我们提出的所有算法都将来自最合适源受试者的标记样本迁移到目标受试者的特征空间中。在两个公开可用的MI数据集上的实验结果表明,我们的算法在使用来自目标受试者的少量标记样本时优于几种现有算法,特别是对于表现良好的目标受试者。