Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110169, China.
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
Rev Sci Instrum. 2021 Sep 1;92(9):094106. doi: 10.1063/5.0054912.
As an important way for human-computer interaction, the motor imagery brain-computer interface (MI-BCI) can decode personal motor intention directly by analyzing electroencephalogram (EEG) signals. However, a large amount of labeled data has to be collected for each new subject since EEG patterns vary between individuals. The long calibration phase severely limits the further development of MI-BCI. To tackle this problem, multi-source joint domain adaption (MJDA) and multi-source joint Riemannian adaption (MJRA) algorithms are proposed in this paper. Both methods aim to transfer knowledge from other subjects to the current subject who has only a small amount of labeled data. First, the common spatial pattern with Euclidean alignment is used to select source subjects who have similar spatial patterns to the target subject. Second, the covariance matrices of EEG trials are aligned in Riemannian space by removing subject-specific baselines. These two steps are shared by MJDA and MJRA. In the last step, MJDA attempts to minimize the feature distribution mismatch in the Riemannian tangent space, while MJRA attempts to find an adaptive Riemannian classifier. Finally, the proposed methods are validated on two datasets: BCI Competition IV 2a and online event-related desynchronization (ERD)-BCI. The experimental results demonstrate that both MJDA and MJRA outperform the state-of-the-art approaches. The MJDA provides a new idea for the offline analysis of MI-BCI, while MJRA could make a big difference to the online calibration of MI-BCI.
作为人机交互的一种重要方式,运动想象脑-机接口(MI-BCI)可以通过分析脑电图(EEG)信号直接解码个人运动意图。然而,由于个体之间的 EEG 模式存在差异,因此每个新的研究对象都需要收集大量的标记数据。长的校准阶段严重限制了 MI-BCI 的进一步发展。为了解决这个问题,本文提出了多源联合域自适应(MJDA)和多源联合黎曼自适应(MJRA)算法。这两种方法都旨在将知识从其他研究对象转移到当前只有少量标记数据的研究对象。首先,使用具有欧几里得对齐的共同空间模式来选择与目标研究对象具有相似空间模式的源研究对象。其次,通过去除特定于主体的基线,在黎曼空间中对齐 EEG 试验的协方差矩阵。这两个步骤是 MJDA 和 MJRA 所共有的。在最后一步中,MJDA 试图最小化黎曼切空间中的特征分布失配,而 MJRA 试图找到一个自适应的黎曼分类器。最后,在两个数据集上验证了所提出的方法:BCI 竞赛 IV 2a 和在线事件相关去同步(ERD)-BCI。实验结果表明,MJDA 和 MJRA 均优于最先进的方法。MJDA 为 MI-BCI 的离线分析提供了一个新的思路,而 MJRA 可以对 MI-BCI 的在线校准产生重大影响。