Suppr超能文献

将随机性和网络结构整合到一个流行病模型中。

Integrating stochasticity and network structure into an epidemic model.

作者信息

Dangerfield C E, Ross J V, Keeling M J

机构信息

Mathematics Institute, University of Warwick, , Gibbet Hill Road, Coventry CV4 7AL, UK.

出版信息

J R Soc Interface. 2009 Sep 6;6(38):761-74. doi: 10.1098/rsif.2008.0410. Epub 2008 Oct 30.

Abstract

While the foundations of modern epidemiology are based upon deterministic models with homogeneous mixing, it is being increasingly realized that both spatial structure and stochasticity play major roles in shaping epidemic dynamics. The integration of these two confounding elements is generally ascertained through numerical simulation. Here, for the first time, we develop a more rigorous analytical understanding based on pairwise approximations to incorporate localized spatial structure and diffusion approximations to capture the impact of stochasticity. Our results allow us to quantify, analytically, the impact of network structure on the variability of an epidemic. Using the susceptible-infectious-susceptible framework for the infection dynamics, the pairwise stochastic model is compared with the stochastic homogeneous-mixing (mean-field) model--although to enable a fair comparison the homogeneous-mixing parameters are scaled to give agreement with the pairwise dynamics. At equilibrium, we show that the pairwise model always displays greater variation about the mean, although the differences are generally small unless the prevalence of infection is low. By contrast, during the early epidemic growth phase when the level of infection is increasing exponentially, the pairwise model generally shows less variation.

摘要

虽然现代流行病学的基础是基于具有均匀混合的确定性模型,但人们越来越认识到空间结构和随机性在塑造疫情动态中都起着重要作用。这两个混杂因素的整合通常通过数值模拟来确定。在此,我们首次基于成对近似发展出一种更严格的分析理解,以纳入局部空间结构,并通过扩散近似来捕捉随机性的影响。我们的结果使我们能够通过分析量化网络结构对疫情变异性的影响。使用感染动态的易感 - 感染 - 易感框架,将成对随机模型与随机均匀混合(平均场)模型进行比较——不过为了进行公平比较,对均匀混合参数进行了缩放,使其与成对动态一致。在平衡状态下,我们表明成对模型在均值周围总是表现出更大的变化,尽管除非感染率很低,否则差异通常很小。相比之下,在疫情早期增长阶段,当感染水平呈指数增长时,成对模型通常表现出较小的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0967/2855510/6dabd9af187c/rsif20080410f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验