Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany and Physik Fakultät, Ludwig Maximilians Universität, 80539 München, Germany.
Phys Rev E. 2020 Mar;101(3-1):032408. doi: 10.1103/PhysRevE.101.032408.
Trajectories of human breast cancer cells moving on one-dimensional circular tracks are modeled by the non-Markovian version of the Langevin equation that includes an arbitrary memory function. When averaged over cells, the velocity distribution exhibits spurious non-Gaussian behavior, while single cells are characterized by Gaussian velocity distributions. Accordingly, the data are described by a linear memory model which includes different random walk models that were previously used to account for various aspects of cell motility such as migratory persistence, non-Markovian effects, colored noise, and anomalous diffusion. The memory function is extracted from the trajectory data without restrictions or assumptions, thus making our approach truly data driven, and is used for unbiased single-cell comparison. The cell memory displays time-delayed single-exponential negative friction, which clearly distinguishes cell motion from the simple persistent random walk model and suggests a regulatory feedback mechanism that controls cell migration. Based on the extracted memory function we formulate a generalized exactly solvable cell migration model which indicates that negative friction generates cell persistence over long timescales. The nonequilibrium character of cell motion is investigated by mapping the non-Markovian Langevin equation with memory onto a Markovian model that involves a hidden degree of freedom and is equivalent to the underdamped active Ornstein-Uhlenbeck process.
在包含任意记忆函数的非马尔可夫朗之万方程的框架下,对人类乳腺癌细胞在一维圆形轨道上的运动轨迹进行建模。对细胞进行平均化处理后,速度分布表现出虚假的非高斯行为,而单个细胞的速度分布则呈现出高斯分布。因此,数据可以用线性记忆模型来描述,该模型包括以前用于解释细胞运动不同方面的各种随机游走模型,如迁移持久性、非马尔可夫效应、有色噪声和异常扩散。记忆函数是从轨迹数据中提取出来的,没有任何限制或假设,因此我们的方法真正做到了数据驱动,并可用于无偏的单细胞比较。细胞记忆显示出具有时间延迟的单指数负摩擦,这明显将细胞运动与简单的持久性随机游走模型区分开来,并暗示存在一种调节反馈机制来控制细胞迁移。基于提取的记忆函数,我们提出了一个广义的可精确求解的细胞迁移模型,该模型表明负摩擦会在长时间尺度上产生细胞持久性。通过将具有记忆的非马尔可夫朗之万方程映射到一个涉及隐藏自由度且与欠阻尼主动奥恩斯坦-乌伦贝克过程等效的马尔可夫模型,研究了细胞运动的非平衡特性。