Suppr超能文献

改进的灰狼优化算法及其应用

Improved Grey Wolf Optimization Algorithm and Application.

作者信息

Hou Yuxiang, Gao Huanbing, Wang Zijian, Du Chuansheng

机构信息

School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China.

Shandong Key Laboratory of Intelligent Building Technology, Jinan 250101, China.

出版信息

Sensors (Basel). 2022 May 17;22(10):3810. doi: 10.3390/s22103810.

Abstract

This paper proposed an improved Grey Wolf Optimizer (GWO) to resolve the problem of instability and convergence accuracy when GWO is used as a meta-heuristic algorithm with strong optimal search capability in the path planning for mobile robots. We improved chaotic tent mapping to initialize the wolves to enhance the global search ability and used a nonlinear convergence factor based on the Gaussian distribution change curve to balance the global and local searchability. In addition, an improved dynamic proportional weighting strategy is proposed that can update the positions of grey wolves so that the convergence of this algorithm can be accelerated. The proposed improved GWO algorithm results are compared with the other eight algorithms through several benchmark function test experiments and path planning experiments. The experimental results show that the improved GWO has higher accuracy and faster convergence speed.

摘要

本文提出了一种改进的灰狼优化算法(GWO),以解决在移动机器人路径规划中,当GWO作为具有强大最优搜索能力的元启发式算法使用时的不稳定性和收敛精度问题。我们改进了混沌帐篷映射来初始化灰狼,以增强全局搜索能力,并基于高斯分布变化曲线使用非线性收敛因子来平衡全局和局部搜索能力。此外,还提出了一种改进的动态比例加权策略,该策略可以更新灰狼的位置,从而加速该算法的收敛。通过几个基准函数测试实验和路径规划实验,将所提出的改进GWO算法的结果与其他八种算法进行了比较。实验结果表明,改进后的GWO具有更高的精度和更快的收敛速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8ae/9147573/98c0611ba435/sensors-22-03810-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验