Department of Electronics Technology, Universidad Carlos III de Madrid, 28911 Madrid, Spain.
Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain.
Sensors (Basel). 2020 Apr 10;20(7):2155. doi: 10.3390/s20072155.
Cell functions and behavior are regulated not only by soluble (biochemical) signals but also by biophysical and mechanical cues within the cells' microenvironment. Thanks to the dynamical and complex cell machinery, cells are genuine and effective mechanotransducers translating mechanical stimuli into biochemical signals, which eventually alter multiple aspects of their own homeostasis. Given the dominant and classic biochemical-based views to explain biological processes, it could be challenging to elucidate the key role that mechanical parameters such as vibration, frequency, and force play in biology. Gaining a better understanding of how mechanical stimuli (and their mechanical parameters associated) affect biological outcomes relies partially on the availability of experimental tools that may allow researchers to alter mechanically the cell's microenvironment and observe cell responses. Here, we introduce a new device to study in vitro responses of cells to dynamic mechanical stimulation using a piezoelectric membrane. Using this device, we can flexibly change the parameters of the dynamic mechanical stimulation (frequency, amplitude, and duration of the stimuli), which increases the possibility to study the cell behavior under different mechanical excitations. We report on the design and implementation of such device and the characterization of its dynamic mechanical properties. By using this device, we have performed a preliminary study on the effect of dynamic mechanical stimulation in a cell monolayer of an epidermal cell line (HaCaT) studying the effects of 1 Hz and 80 Hz excitation frequencies (in the dynamic stimuli) on HaCaT cell migration, proliferation, and morphology. Our preliminary results indicate that the response of HaCaT is dependent on the frequency of stimulation. The device is economic, easily replicated in other laboratories and can support research for a better understanding of mechanisms mediating cellular mechanotransduction.
细胞的功能和行为不仅受到可溶性(生化)信号的调节,还受到细胞微环境中的生物物理和机械线索的调节。由于细胞具有动态和复杂的机械装置,细胞是真正有效的机械传感器,能够将机械刺激转化为生化信号,从而最终改变细胞自身稳态的多个方面。鉴于以经典的生化观点来解释生物过程,可能难以阐明振动、频率和力等机械参数在生物学中的关键作用。更好地了解机械刺激(及其相关的机械参数)如何影响生物学结果,部分依赖于实验工具的可用性,这些工具可能使研究人员能够改变细胞微环境的机械性质,并观察细胞的反应。在这里,我们引入了一种新的设备,该设备使用压电膜来研究细胞对动态机械刺激的体外反应。使用该设备,我们可以灵活地改变动态机械刺激的参数(刺激的频率、幅度和持续时间),这增加了在不同机械激励下研究细胞行为的可能性。我们报告了这种设备的设计和实现,并对其动态机械性能进行了表征。通过使用该设备,我们对表皮细胞系(HaCaT)的单层细胞进行了动态机械刺激的初步研究,研究了 1 Hz 和 80 Hz 激励频率(在动态刺激中)对 HaCaT 细胞迁移、增殖和形态的影响。我们的初步结果表明,HaCaT 的反应取决于刺激的频率。该设备经济实惠,易于在其他实验室中复制,并且可以支持研究,以更好地理解介导细胞机械转导的机制。