Suppr超能文献

QuaDMutNetEx:一种用于检测低突变频率癌症驱动基因的方法。

QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.

机构信息

Department of Computer Science, College of Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA 23284, USA.

Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.

出版信息

BMC Bioinformatics. 2020 Mar 23;21(1):122. doi: 10.1186/s12859-020-3449-2.

Abstract

BACKGROUND

Cancer is caused by genetic mutations, but not all somatic mutations in human DNA drive the emergence or growth of cancers. While many frequently-mutated cancer driver genes have already been identified and are being utilized for diagnostic, prognostic, or therapeutic purposes, identifying driver genes that harbor mutations occurring with low frequency in human cancers is an ongoing endeavor. Typically, mutations that do not confer growth advantage to tumors - passenger mutations - dominate the mutation landscape of tumor cell genome, making identification of low-frequency driver mutations a challenge. The leading approach for discovering new putative driver genes involves analyzing patterns of mutations in large cohorts of patients and using statistical methods to discriminate driver from passenger mutations.

RESULTS

We propose a novel cancer driver gene detection method, QuaDMutNetEx. QuaDMutNetEx discovers cancer drivers with low mutation frequency by giving preference to genes encoding proteins that are connected in human protein-protein interaction networks, and that at the same time show low deviation from the mutual exclusivity pattern that characterizes driver mutations occurring in the same pathway or functional gene group across a cohort of cancer samples.

CONCLUSIONS

Evaluation of QuaDMutNetEx on four different tumor sample datasets show that the proposed method finds biologically-connected sets of low-frequency driver genes, including many genes that are not found if the network connectivity information is not considered. Improved quality and interpretability of the discovered putative driver gene sets compared to existing methods shows that QuaDMutNetEx is a valuable new tool for detecting driver genes. QuaDMutNetEx is available for download from https://github.com/bokhariy/QuaDMutNetExunder the GNU GPLv3 license.

摘要

背景

癌症是由基因突变引起的,但并非人类 DNA 中的所有体细胞突变都能驱动癌症的发生或生长。虽然已经确定了许多高频突变的癌症驱动基因,并将其用于诊断、预后或治疗目的,但识别在人类癌症中低频突变的驱动基因仍然是一个持续的努力。通常,不会给肿瘤带来生长优势的突变——乘客突变——主导着肿瘤细胞基因组的突变景观,使得低频驱动突变的识别成为一个挑战。发现新的潜在驱动基因的主要方法涉及分析大量患者队列中的突变模式,并使用统计方法来区分驱动突变和乘客突变。

结果

我们提出了一种新的癌症驱动基因检测方法,QuaDMutNetEx。QuaDMutNetEx 通过优先考虑在人类蛋白质-蛋白质相互作用网络中相互连接的基因,以及同时显示与驱动突变特征一致的低偏离度(即同一途径或功能基因组中的驱动突变在癌症样本队列中发生的互斥模式),从而发现低频驱动突变的癌症驱动基因。

结论

在四个不同的肿瘤样本数据集上的评估表明,该方法发现了具有生物学相关性的低频驱动基因集,其中包括许多如果不考虑网络连通性信息就无法发现的基因。与现有方法相比,所发现的潜在驱动基因集的质量和可解释性得到了提高,表明 QuaDMutNetEx 是一种检测驱动基因的有价值的新工具。QuaDMutNetEx 可从 https://github.com/bokhariy/QuaDMutNetEx 下载,根据 GNU GPLv3 许可证提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ea5/7092414/81566f48cdaf/12859_2020_3449_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验