Gogl Gergo, Jane Pau, Caillet-Saguy Célia, Kostmann Camille, Bich Goran, Cousido-Siah Alexandra, Nyitray Laszlo, Vincentelli Renaud, Wolff Nicolas, Nomine Yves, Sluchanko Nikolai N, Trave Gilles
Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France.
Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France.
Structure. 2020 Jul 7;28(7):747-759.e3. doi: 10.1016/j.str.2020.03.010. Epub 2020 Apr 14.
Protein-protein interaction motifs are often alterable by post-translational modifications. For example, 19% of predicted human PDZ domain-binding motifs (PBMs) have been experimentally proven to be phosphorylated, and up to 82% are theoretically phosphorylatable. Phosphorylation of PBMs may drastically rewire their interactomes, by altering their affinities for PDZ domains and 14-3-3 proteins. The effect of phosphorylation is often analyzed by performing "phosphomimetic" mutations. Here, we focused on the PBMs of HPV16-E6 viral oncoprotein and human RSK1 kinase. We measured the binding affinities of native, phosphorylated, and phosphomimetic variants of both PBMs toward the 266 human PDZ domains. We co-crystallized all the motif variants with a selected PDZ domain to characterize the structural consequence of the different modifications. Finally, we elucidated the structural basis of PBM capture by 14-3-3 proteins. This study provides novel atomic and interactomic insights into phosphorylatable dual specificity motifs and the differential effects of phosphorylation and phosphomimetic approaches.
蛋白质-蛋白质相互作用基序通常可通过翻译后修饰进行改变。例如,经实验证明,预测的人类PDZ结构域结合基序(PBM)中有19%发生了磷酸化,理论上高达82%的PBM可发生磷酸化。PBM的磷酸化可能会通过改变其对PDZ结构域和14-3-3蛋白的亲和力,彻底重塑其相互作用组。磷酸化的影响通常通过进行“磷酸模拟”突变来分析。在此,我们聚焦于HPV16-E6病毒癌蛋白和人类RSK1激酶的PBM。我们测量了这两种PBM的天然、磷酸化和磷酸模拟变体对266个人类PDZ结构域的结合亲和力。我们将所有基序变体与一个选定的PDZ结构域共结晶,以表征不同修饰的结构后果。最后,我们阐明了14-3-3蛋白捕获PBM的结构基础。这项研究为可磷酸化的双特异性基序以及磷酸化和磷酸模拟方法的不同效应提供了新的原子水平和相互作用组学见解。