Suppr超能文献

基于 LBP 的算法在 CNN 模型中对具有相似形态的作物和杂草进行检测的性能。

Performances of the LBP Based Algorithm over CNN Models for Detecting Crops and Weeds with Similar Morphologies.

机构信息

Electronic Science Research Institute, Edith Cowan University, Perth 6000, Australia.

出版信息

Sensors (Basel). 2020 Apr 14;20(8):2193. doi: 10.3390/s20082193.

Abstract

Weed invasions pose a threat to agricultural productivity. Weed recognition and detection play an important role in controlling weeds. The challenging problem of weed detection is how to discriminate between crops and weeds with a similar morphology under natural field conditions such as occlusion, varying lighting conditions, and different growth stages. In this paper, we evaluate a novel algorithm, filtered Local Binary Patterns with contour masks and coefficient k (k-FLBPCM), for discriminating between morphologically similar crops and weeds, which shows significant advantages, in both model size and accuracy, over state-of-the-art deep convolutional neural network (CNN) models such as VGG-16, VGG-19, ResNet-50 and InceptionV3. The experimental results on the "bccr-segset" dataset in the laboratory testbed setting show that the accuracy of CNN models with fine-tuned hyper-parameters is slightly higher than the k-FLBPCM method, while the accuracy of the k-FLBPCM algorithm is higher than the CNN models (except for VGG-16) for the more realistic "fieldtrip_can_weeds" dataset collected from real-world agricultural fields. However, the CNN models require a large amount of labelled samples for the training process. We conducted another experiment based on training with crop images at mature stages and testing at early stages. The k-FLBPCM method outperformed the state-of-the-art CNN models in recognizing small leaf shapes at early growth stages, with error rates an order of magnitude lower than CNN models for canola-radish (crop-weed) discrimination using a subset extracted from the "bccr-segset" dataset, and for the "mixed-plants" dataset. Moreover, the real-time weed-plant discrimination time attained with the k-FLBPCM algorithm is approximately 0.223 ms per image for the laboratory dataset and 0.346 ms per image for the field dataset, and this is an order of magnitude faster than that of CNN models.

摘要

杂草入侵对农业生产力构成威胁。杂草识别和检测在杂草控制中起着重要作用。杂草检测的挑战性问题是如何在自然田间条件下区分形态相似的作物和杂草,例如遮挡、变化的光照条件和不同的生长阶段。在本文中,我们评估了一种新的算法,即带轮廓掩模和系数 k 的滤波局部二值模式(k-FLBPCM),用于区分形态相似的作物和杂草,该算法在模型大小和准确性方面均优于最先进的深度卷积神经网络(CNN)模型,如 VGG-16、VGG-19、ResNet-50 和 InceptionV3。在实验室测试平台的“bccr-segset”数据集上的实验结果表明,经过微调超参数的 CNN 模型的准确性略高于 k-FLBPCM 方法,而 k-FLBPCM 算法的准确性高于 CNN 模型(除了 VGG-16),用于从现实农业领域采集的更真实的“fieldtrip_can_weeds”数据集。然而,CNN 模型在训练过程中需要大量的标记样本。我们进行了另一项实验,基于成熟阶段的作物图像进行训练,早期阶段进行测试。在早期生长阶段识别小叶片形状时,k-FLBPCM 方法优于最先进的 CNN 模型,对于使用从“bccr-segset”数据集提取的子集进行的油菜萝卜(作物-杂草)识别,以及对于“混合植物”数据集,错误率比 CNN 模型低一个数量级。此外,k-FLBPCM 算法实现的实时杂草-植物识别时间在实验室数据集上约为 0.223 ms/图像,在田间数据集上约为 0.346 ms/图像,比 CNN 模型快一个数量级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/986b/7218891/8425a4c57a7b/sensors-20-02193-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验