文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多特征融合和支持向量机的田间杂草和玉米幼苗检测。

Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine.

机构信息

Department of Information Science, Xi'an University of Technology, Xi'an 710048, China.

Chinese Academy of Agricultural Mechanization Sciences, Beijing 100083, China.

出版信息

Sensors (Basel). 2020 Dec 31;21(1):212. doi: 10.3390/s21010212.


DOI:10.3390/s21010212
PMID:33396255
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7796182/
Abstract

Detection of weeds and crops is the key step for precision spraying using the spraying herbicide robot and precise fertilization for the agriculture machine in the field. On the basis of k-mean clustering image segmentation using color information and connected region analysis, a method combining multi feature fusion and support vector machine (SVM) was proposed to identify and detect the position of corn seedlings and weeds, to reduce the harm of weeds on corn growth, and to achieve accurate fertilization, thereby realizing precise weeding or fertilizing. First, the image dataset for weed and corn seedling classification in the corn seedling stage was established. Second, many different features of corn seedlings and weeds were extracted, and dimensionality was reduced by principal component analysis, including the histogram of oriented gradient feature, rotation invariant local binary pattern (LBP) feature, Hu invariant moment feature, Gabor feature, gray level co-occurrence matrix, and gray level-gradient co-occurrence matrix. Then, the classifier training based on SVM was conducted to obtain the recognition model for corn seedlings and weeds. The comprehensive recognition performance of single feature or different fusion strategies for six features is compared and analyzed, and the optimal feature fusion strategy is obtained. Finally, by utilizing the actual corn seedling field images, the proposed weed and corn seedling detection method effect was tested. LAB color space and K-means clustering were used to achieve image segmentation. Connected component analysis was adopted to remove small objects. The previously trained recognition model was utilized to identify and label each connected region to identify and detect weeds and corn seedlings. The experimental results showed that the fusion feature combination of rotation invariant LBP feature and gray level-gradient co-occurrence matrix based on SVM classifier obtained the highest classification accuracy and accurately detected all kinds of weeds and corn seedlings. It provided information on weed and crop positions to the spraying herbicide robot for accurate spraying or to the precise fertilization machine for accurate fertilizing.

摘要

杂草和作物的检测是使用喷雾除草机器人进行精准喷雾和农业机械精确施肥的关键步骤。在基于颜色信息的 k-均值聚类图像分割和连通区域分析的基础上,提出了一种结合多特征融合和支持向量机(SVM)的方法,用于识别和检测玉米苗和杂草的位置,以减少杂草对玉米生长的危害,并实现精确施肥,从而实现精准除草或施肥。首先,建立了玉米苗期杂草和玉米苗分类的图像数据集。其次,提取了玉米苗和杂草的许多不同特征,并通过主成分分析进行降维,包括方向梯度直方图特征、旋转不变局部二值模式(LBP)特征、Hu 不变矩特征、Gabor 特征、灰度共生矩阵和灰度梯度共生矩阵。然后,基于 SVM 进行分类器训练,得到玉米苗和杂草的识别模型。对比分析了单特征或不同融合策略的综合识别性能,得出了最优的特征融合策略。最后,利用实际的玉米苗田图像,测试了提出的杂草和玉米苗检测方法的效果。使用 LAB 颜色空间和 K-means 聚类实现图像分割,采用连通区域分析去除小目标。利用之前训练好的识别模型对每个连通区域进行识别和标注,以识别和检测杂草和玉米苗。实验结果表明,基于 SVM 分类器的旋转不变 LBP 特征和灰度梯度共生矩阵融合特征组合获得了最高的分类精度,准确地检测到了各种杂草和玉米苗。为喷雾除草机器人提供了杂草和作物位置信息,以便进行准确喷雾,或者为精确施肥机提供信息,以便进行准确施肥。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/4378d91d5327/sensors-21-00212-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/2a535b000cd8/sensors-21-00212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/4262adebc3ee/sensors-21-00212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/fd756eec35d7/sensors-21-00212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/ec1335e0a90c/sensors-21-00212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/72497ea1cc50/sensors-21-00212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/883d410d46bf/sensors-21-00212-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/4af9c2651ba5/sensors-21-00212-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/d551570d4c13/sensors-21-00212-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/6760cb8056f3/sensors-21-00212-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/aa6a2d0cbcac/sensors-21-00212-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/9b6fdb2892b4/sensors-21-00212-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/4378d91d5327/sensors-21-00212-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/2a535b000cd8/sensors-21-00212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/4262adebc3ee/sensors-21-00212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/fd756eec35d7/sensors-21-00212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/ec1335e0a90c/sensors-21-00212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/72497ea1cc50/sensors-21-00212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/883d410d46bf/sensors-21-00212-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/4af9c2651ba5/sensors-21-00212-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/d551570d4c13/sensors-21-00212-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/6760cb8056f3/sensors-21-00212-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/aa6a2d0cbcac/sensors-21-00212-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/9b6fdb2892b4/sensors-21-00212-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d0/7796182/4378d91d5327/sensors-21-00212-g012.jpg

相似文献

[1]
Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine.

Sensors (Basel). 2020-12-31

[2]
Weed target detection at seedling stage in paddy fields based on YOLOX.

PLoS One. 2023

[3]
YOLOX-based blue laser weeding robot in corn field.

Front Plant Sci. 2022-11-4

[4]
Design and operation of a Peucedani Radix weeding device based on YOLOV5 and a parallel manipulator.

Front Plant Sci. 2023-5-30

[5]
[Research on identification of cabbages and weeds combining spectral imaging technology and SAM taxonomy].

Guang Pu Xue Yu Guang Pu Fen Xi. 2015-2

[6]
Towards practical object detection for weed spraying in precision agriculture.

Front Plant Sci. 2023-11-3

[7]
Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields.

PLoS One. 2019-4-18

[8]
Improving U-net network for semantic segmentation of corns and weeds during corn seedling stage in field.

Front Plant Sci. 2024-2-9

[9]
A Real-Time Weed Mapping and Precision Herbicide Spraying System for Row Crops.

Sensors (Basel). 2018-12-3

[10]
An automatic visible-range video weed detection, segmentation and classification prototype in potato field.

Heliyon. 2020-5-26

引用本文的文献

[1]
Machine Learning-Based Morphological Classification and Diversity Analysis of Ornamental Pumpkin Seeds.

Foods. 2025-4-25

[2]
A statistical method for high-throughput emergence rate calculation for soybean breeding plots based on field phenotypic characteristics.

Plant Methods. 2025-3-24

[3]
Maize quality detection based on MConv-SwinT high-precision model.

PLoS One. 2025-1-24

[4]
Lightweight Corn Leaf Detection and Counting Using Improved YOLOv8.

Sensors (Basel). 2024-8-15

[5]
Improving U-net network for semantic segmentation of corns and weeds during corn seedling stage in field.

Front Plant Sci. 2024-2-9

[6]
Multi-Class Weed Recognition Using Hybrid CNN-SVM Classifier.

Sensors (Basel). 2023-8-13

[7]
Escalator Foundation Bolt Loosening Fault Recognition Based on Empirical Wavelet Transform and Multi-Scale Gray-Gradient Co-Occurrence Matrix.

Sensors (Basel). 2023-7-30

[8]
YOLOX-based blue laser weeding robot in corn field.

Front Plant Sci. 2022-11-4

[9]
Cabbage and Weed Identification Based on Machine Learning and Target Spraying System Design.

Front Plant Sci. 2022-8-4

[10]
Identifying Irregular Potatoes Using Hausdorff Distance and Intersection over Union.

Sensors (Basel). 2022-7-31

本文引用的文献

[1]
Crop/Weed Discrimination Using a Field Imaging Spectrometer System.

Sensors (Basel). 2019-11-25

[2]
Machine Learning in Agriculture: A Review.

Sensors (Basel). 2018-8-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索