Suppr超能文献

完成了用于纹理分类的局部二值模式算子的建模。

A completed modeling of local binary pattern operator for texture classification.

出版信息

IEEE Trans Image Process. 2010 Jun;19(6):1657-63. doi: 10.1109/TIP.2010.2044957. Epub 2010 Mar 8.

Abstract

In this correspondence, a completed modeling of the local binary pattern (LBP) operator is proposed and an associated completed LBP (CLBP) scheme is developed for texture classification. A local region is represented by its center pixel and a local difference sign-magnitude transform (LDSMT). The center pixels represent the image gray level and they are converted into a binary code, namely CLBP-Center (CLBP_C), by global thresholding. LDSMT decomposes the image local differences into two complementary components: the signs and the magnitudes, and two operators, namely CLBP-Sign (CLBP_S) and CLBP-Magnitude (CLBP_M), are proposed to code them. The traditional LBP is equivalent to the CLBP_S part of CLBP, and we show that CLBP_S preserves more information of the local structure than CLBP_M, which explains why the simple LBP operator can extract the texture features reasonably well. By combining CLBP_S, CLBP_M, and CLBP_C features into joint or hybrid distributions, significant improvement can be made for rotation invariant texture classification.

摘要

在这封信件中,提出了一种完整的局部二值模式 (LBP) 算子建模,并为纹理分类开发了一种相关的完整 LBP (CLBP) 方案。通过局部区域的中心像素和局部差分符号幅度变换 (LDSMT) 表示。中心像素表示图像的灰度值,它们通过全局阈值转换为二进制代码,即 CLBP-Center (CLBP_C)。LDSMT 将图像局部差异分解为两个互补分量:符号和幅度,并提出了两个算子,即 CLBP-Sign (CLBP_S) 和 CLBP-Magnitude (CLBP_M) 来对它们进行编码。传统的 LBP 等效于 CLBP 的 CLBP_S 部分,我们表明 CLBP_S 比 CLBP_M 保留了更多的局部结构信息,这解释了为什么简单的 LBP 算子可以合理地提取纹理特征。通过将 CLBP_S、CLBP_M 和 CLBP_C 特征组合成联合或混合分布,可以显著提高旋转不变纹理分类的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验