Suppr超能文献

处于关键位置的G蛋白偶联受体:糖基化及其他翻译后修饰

G Protein-Coupled Receptors in the Sweet Spot: Glycosylation and other Post-translational Modifications.

作者信息

Goth Christoffer K, Petäjä-Repo Ulla E, Rosenkilde Mette M

机构信息

Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK 2200, Denmark.

Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, FI-90014, Finland.

出版信息

ACS Pharmacol Transl Sci. 2020 Mar 17;3(2):237-245. doi: 10.1021/acsptsci.0c00016. eCollection 2020 Apr 10.

Abstract

Post-translational modifications (PTMs) are a fundamental phenomenon across all classes of life and several hundred different types have been identified. PTMs contribute widely to the biological functions of proteins and greatly increase their diversity. One important class of proteins regulated by PTMs, is the cell surface expressed G protein-coupled receptors (GPCRs). While most PTMs have been shown to exert distinct biological functions, we are only beginning to approach the complexity that the potential interplay between different PTMs may have on biological functions and their regulation. Importantly, PTMs and their potential interplay represent an appealing mechanism for cell and tissue specific regulation of GPCR function and may partially contribute to functional selectivity of some GPCRs. In this review we highlight examples of PTMs located in GPCR extracellular domains, with special focus on glycosylation and the potential interplay with other close-by PTMs such as tyrosine sulfation, proteolytic cleavage, and phosphorylation.

摘要

翻译后修饰(PTMs)是所有生命类别中普遍存在的一种基本现象,目前已鉴定出数百种不同类型。PTMs广泛影响蛋白质的生物学功能,并极大地增加了其多样性。一类重要的受PTMs调节的蛋白质是细胞表面表达的G蛋白偶联受体(GPCRs)。虽然大多数PTMs已被证明具有独特的生物学功能,但我们才刚刚开始探究不同PTMs之间潜在的相互作用对生物学功能及其调节可能产生的复杂性。重要的是,PTMs及其潜在的相互作用代表了一种对GPCR功能进行细胞和组织特异性调节的有吸引力的机制,并且可能部分促成了某些GPCR的功能选择性。在本综述中,我们重点介绍位于GPCR细胞外结构域的PTMs实例,特别关注糖基化以及与其他相邻PTMs(如酪氨酸硫酸化、蛋白水解切割和磷酸化)的潜在相互作用。

相似文献

1
G Protein-Coupled Receptors in the Sweet Spot: Glycosylation and other Post-translational Modifications.
ACS Pharmacol Transl Sci. 2020 Mar 17;3(2):237-245. doi: 10.1021/acsptsci.0c00016. eCollection 2020 Apr 10.
3
Post-translational Modifications of Opioid Receptors.
Trends Neurosci. 2020 Jun;43(6):417-432. doi: 10.1016/j.tins.2020.03.011. Epub 2020 Apr 16.
4
Post-Translational Modifications of G Protein-Coupled Receptors Revealed by Proteomics and Structural Biology.
Front Chem. 2022 Mar 10;10:843502. doi: 10.3389/fchem.2022.843502. eCollection 2022.
5
Post-translational modifications of the apelin receptor regulate its functional expression.
AIMS Neurosci. 2023 Oct 31;10(4):282-299. doi: 10.3934/Neuroscience.2023022. eCollection 2023.
7
Post-translational Modifications in Oral Bacteria and Their Functional Impact.
Front Microbiol. 2021 Dec 2;12:784923. doi: 10.3389/fmicb.2021.784923. eCollection 2021.
8
Post-translational and transcriptional dynamics - regulating  extracellular vesicle biology.
Expert Rev Proteomics. 2019 Jan;16(1):17-31. doi: 10.1080/14789450.2019.1551135. Epub 2018 Nov 29.
9
Importance of post-translational modifications on the function of key haemostatic proteins.
Blood Coagul Fibrinolysis. 2016 Jan;27(1):1-4. doi: 10.1097/MBC.0000000000000301.
10
Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies.
Mol Microbiol. 2018 Jan;107(1):1-23. doi: 10.1111/mmi.13867. Epub 2017 Nov 28.

引用本文的文献

1
Functional Divergence for N-Linked Glycosylation Sites in Equine Lutropin/Choriogonadotropin Receptors.
Curr Issues Mol Biol. 2025 Jul 25;47(8):590. doi: 10.3390/cimb47080590.
2
Sequence, characterization and pharmacological analyses of the adipokinetic hormone receptor in the stick insect, .
Front Endocrinol (Lausanne). 2025 Jul 17;16:1601334. doi: 10.3389/fendo.2025.1601334. eCollection 2025.
3
Is dolichol pathway dysfunction a significant factor in Alzheimer's disease?
Inflammopharmacology. 2025 Jul 25. doi: 10.1007/s10787-025-01868-x.
5
Post-translational modifications orchestrate the intrinsic signaling bias of GPR52.
Nat Chem Biol. 2025 Mar 14. doi: 10.1038/s41589-025-01864-w.
6
A "Dock-Work" Orange: A Dual-Receptor Biochemical Theory on the Deterrence Induced by Citrusy Aroma on Elephant Traffic Central to a Conservation Effort.
Bioinform Biol Insights. 2025 Feb 28;19:11779322251315922. doi: 10.1177/11779322251315922. eCollection 2025.
7
Structural basis for lipid-mediated activation of G protein-coupled receptor GPR55.
Nat Commun. 2025 Feb 25;16(1):1973. doi: 10.1038/s41467-025-57204-y.
8
Integrated Multiomics Reveals Alterations in Paucimannose and Complex Type N-Glycans in Cardiac Tissue of Patients with COVID-19.
Mol Cell Proteomics. 2025 Apr;24(4):100929. doi: 10.1016/j.mcpro.2025.100929. Epub 2025 Feb 22.
9
Covalent functionalization of G protein-coupled receptors by small molecular probes.
RSC Chem Biol. 2025 Feb 14;6(4):528-538. doi: 10.1039/d4cb00294f. eCollection 2025 Apr 2.

本文引用的文献

1
Calcitonin Receptor N-Glycosylation Enhances Peptide Hormone Affinity by Controlling Receptor Dynamics.
J Mol Biol. 2020 Mar 27;432(7):1996-2014. doi: 10.1016/j.jmb.2020.01.028. Epub 2020 Feb 6.
2
Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3.
Nat Chem Biol. 2020 Mar;16(3):351-360. doi: 10.1038/s41589-019-0444-x. Epub 2020 Jan 13.
3
Emerging patterns of tyrosine sulfation and O-glycosylation cross-talk and co-localization.
Curr Opin Struct Biol. 2020 Jun;62:102-111. doi: 10.1016/j.sbi.2019.12.002. Epub 2020 Jan 9.
4
Galnt11 regulates kidney function by glycosylating the endocytosis receptor megalin to modulate ligand binding.
Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25196-25202. doi: 10.1073/pnas.1909573116. Epub 2019 Nov 18.
5
Sialic acid mediated mechanical activation of β adrenergic receptors by bacterial pili.
Nat Commun. 2019 Oct 18;10(1):4752. doi: 10.1038/s41467-019-12685-6.
7
An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells.
Mol Cell. 2019 Jul 25;75(2):394-407.e5. doi: 10.1016/j.molcel.2019.05.017. Epub 2019 Jun 18.
8
Human red and green cone opsins are -glycosylated at an N-terminal Ser/Thr-rich domain conserved in vertebrates.
J Biol Chem. 2019 May 17;294(20):8123-8133. doi: 10.1074/jbc.RA118.006835. Epub 2019 Apr 4.
9
GPCR Signaling Regulation: The Role of GRKs and Arrestins.
Front Pharmacol. 2019 Feb 19;10:125. doi: 10.3389/fphar.2019.00125. eCollection 2019.
10
Mapping the O-glycoproteome using site-specific extraction of O-linked glycopeptides (EXoO).
Mol Syst Biol. 2018 Nov 20;14(11):e8486. doi: 10.15252/msb.20188486.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验