Suppr超能文献

通过降低测量噪声揭示 S100A4 mRNA-蛋白质关系。

S100A4 mRNA-protein relationship uncovered by measurement noise reduction.

机构信息

Genomics Core Facility, VetCore, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria.

Computational Systems Biology, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria.

出版信息

J Mol Med (Berl). 2020 May;98(5):735-749. doi: 10.1007/s00109-020-01898-8. Epub 2020 Apr 15.

Abstract

Intrinsic biological fluctuation and/or measurement error can obscure the association of gene expression patterns between RNA and protein levels. Appropriate normalization of reverse-transcription quantitative PCR (RT-qPCR) data can reduce technical noise in transcript measurement, thus uncovering such relationships. The accuracy of gene expression measurement is often challenged in the context of cancer due to the genetic instability and "splicing weakness" involved. Here, we sequenced the poly(A) cancer transcriptome of canine osteosarcoma using mRNA-Seq. Expressed sequences were resolved at the level of two consecutive exons to enable the design of exon-border spanning RT-qPCR assays and ranked for stability based on the coefficient of variation (CV). Using the same template type for RT-qPCR validation, i.e. poly(A) RNA, avoided skewing of stability assessment by circular RNAs (circRNAs) and/or rRNA deregulation. The strength of the relationship between mRNA expression of the tumour marker S100A4 and its proportion score of quantitative immunohistochemistry (qIHC) was introduced as an experimental readout to fine-tune the normalization choice. Together with the essential logit transformation of qIHC scores, this approach reduced the noise of measurement as demonstrated by uncovering a highly significant, strong association between mRNA and protein expressions of S100A4 (Spearman's coefficient ρ = 0.72 (p = 0.006)). KEY MESSAGES: • RNA-seq identifies stable pairs of consecutive exons in a heterogeneous tumour. • Poly(A) RNA templates for RT-qPCR avoid bias from circRNA and rRNA deregulation. • HNRNPL is stably expressed across various cancer tissues and osteosarcoma. • Logit transformed qIHC score better associates with mRNA amount. • Quantification of minor S100A4 mRNA species requires poly(A) RNA templates and dPCR.

摘要

内在的生物波动和/或测量误差可能会掩盖 RNA 和蛋白质水平之间基因表达模式的关联。适当的逆转录定量 PCR(RT-qPCR)数据标准化可以减少转录测量中的技术噪声,从而揭示这种关系。由于涉及的遗传不稳定性和“剪接弱点”,在癌症背景下,基因表达测量的准确性经常受到挑战。在这里,我们使用 mRNA-Seq 对犬骨肉瘤的多聚(A)癌症转录组进行了测序。表达序列在两个连续外显子的水平上得到解决,从而能够设计外显子边界跨越 RT-qPCR 测定,并根据变异系数(CV)进行稳定性排名。使用相同的 RT-qPCR 验证模板类型,即多聚(A)RNA,避免了环状 RNA(circRNA)和/或 rRNA 失调对稳定性评估的扭曲。肿瘤标志物 S100A4 的 mRNA 表达与其定量免疫组织化学(qIHC)比例评分之间的关系强度被引入作为实验读数,以微调归一化选择。与 qIHC 评分的必要逻辑转换一起,这种方法减少了测量噪声,如 S100A4 的 mRNA 和蛋白质表达之间高度显著的强关联所证明的那样(Spearman 系数 ρ=0.72(p=0.006))。 关键信息: • RNA-seq 在异质肿瘤中鉴定出稳定的连续外显子对。 • RT-qPCR 的 Poly(A) RNA 模板避免了 circRNA 和 rRNA 失调的偏差。 • HNRNPL 在各种癌症组织和骨肉瘤中稳定表达。 • 对数转换的 qIHC 评分与 mRNA 量更好地关联。 • 微量 S100A4 mRNA 种类的定量需要 Poly(A) RNA 模板和 dPCR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f2/7241963/a3a38b87100a/109_2020_1898_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验