Suppr超能文献

开发和验证患有晚期慢性肾脏病的肺炎患者院内死亡率的多变量预测模型:使用日本全国范围内数据库的回顾性分析。

Developing and validating a multivariable prediction model for in-hospital mortality of pneumonia with advanced chronic kidney disease patients: a retrospective analysis using a nationwide database in Japan.

机构信息

Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan.

Department of Nephrology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan.

出版信息

Clin Exp Nephrol. 2020 Aug;24(8):715-724. doi: 10.1007/s10157-020-01887-8. Epub 2020 Apr 15.

Abstract

BACKGROUND

The prognosis of pneumonia in patients with advanced stage chronic kidney disease (CKD) remains unimproved for years. We attempt to develop a simple and more useful scoring system for predicting in-hospital mortality for advanced CKD patients with pneumonia.

METHODS

Using the Diagnosis Procedure Combination database, we identified the in-hospital adult patients both with a record of pneumonia and stage 5 or 5D CKD as a comorbidity on admission between April 1, 2012 and March 31, 2016. Predictive variable selection was analyzed by multivariable logistic regression analysis, stepwise method, LASSO method and random forest method, and then develop a new simple scoring system seeking for highest c-statistics combination of variables in one sample data set for model development. Finally, we compared c-statistics of univariate logistic regression about new scoring system with c-statistics about "A-DROP" in the other sample data set.

RESULT

We identified 8402 patients in 707 hospitals, and the total in-hospital mortality was 11.0% (437 patients) in development data set. Seven variables were selected, which includes age (male ≥ 70 years, female ≥ 75 years), respiratory failure, orientation disturbance, low blood pressure, the need of assistance in feeding or bowel control, severe or moderate thinness and CRP 200 mg/L or extent of consolidation on chest X-ray ≥ 2/3 of one lung. The c-statistics of univariate logistic regression was 0.8017 using seven variables, while that was 0.7372 using "A-DROP" CONCLUSION: In advanced CKD patients, if we select appropriate variables for predicting in-hospital mortality, simple scoring system may have better discrimination than "A-DROP".

摘要

背景

多年来,晚期慢性肾脏病(CKD)患者肺炎的预后仍未改善。我们试图开发一种简单且更有用的评分系统,以预测患有肺炎的晚期 CKD 患者的住院死亡率。

方法

使用诊断程序组合数据库,我们确定了 2012 年 4 月 1 日至 2016 年 3 月 31 日期间在住院期间患有肺炎和 5 期或 5D CKD 的住院成年患者记录。通过多变量逻辑回归分析、逐步法、LASSO 法和随机森林法进行预测变量选择,并在一个样本数据集的变量中寻求最高的 c 统计量组合来开发新的简单评分系统。最后,我们比较了新评分系统的单变量逻辑回归的 c 统计量与另一个样本数据集中“ A-DROP”的 c 统计量。

结果

我们在 707 家医院中确定了 8402 名患者,在开发数据集中,总住院死亡率为 11.0%(437 名患者)。选择了七个变量,包括年龄(男性≥70 岁,女性≥75 岁)、呼吸衰竭、定向障碍、低血压、需要帮助进食或控制肠道、严重或中度消瘦以及 CRP 200mg/L 或胸部 X 射线上的实变程度≥2/3 的肺。使用七个变量的单变量逻辑回归的 c 统计量为 0.8017,而使用“ A-DROP”的 c 统计量为 0.7372。

结论

在晚期 CKD 患者中,如果我们选择合适的变量来预测住院死亡率,简单的评分系统可能比“ A-DROP”具有更好的判别能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验