Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.
Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.
Anal Chem. 2020 May 19;92(10):6909-6917. doi: 10.1021/acs.analchem.9b05563. Epub 2020 May 4.
Oligonucleotide aptamers can be converted into structure-switching biosensors by incorporating a short, typically labeled oligonucleotide that is complementary to the analyte-binding region. Binding of a target analyte can disrupt the hybridization equilibrium between the aptamer and the labeled-complementary oligo producing a concentration-dependent signal for target-analyte sensing. Despite its importance in the performance of a biosensor, the mechanism of analyte-response of most structure-switching aptamers is not well understood. In this work, we employ single-molecule fluorescence imaging to investigate the competitive kinetics of association of a labeled complementary oligonucleotide and a target analyte, l-tyrosinamide (L-Tym), interacting with an L-Tym-binding aptamer. The complementary readout strand is fluorescently labeled, allowing us to measure its hybridization kinetics with individual aptamers immobilized on a surface and located with super-resolution techniques; the small-molecule L-Tym analyte is not labeled in order to avoid having an attached dye molecule impact its interactions with the aptamer. We measure the association kinetics of unlabeled L-Tym by detecting its influence on the hybridization of the labeled complementary strand. We find that L-Tym slows the association rate of the complementary strand with the aptamer but does not impact its dissociation rate, suggesting an S1-like mechanism where the complementary strand must dissociate before L-Tym can bind. The competitive model revealed a slow association rate between L-Tym and the aptamer, producing a long-lived L-Tym-aptamer complex that blocks hybridization with the labeled complementary strand. These results provide insight about the kinetics and mechanism of analyte recognition in this structure-switching aptamer, and the methodology provides a general means of measuring the rates of unlabeled-analyte binding kinetics in aptamer-based biosensors.
寡核苷酸适体可以通过掺入短的、通常标记的寡核苷酸来转化为结构切换生物传感器,该寡核苷酸与分析物结合区域互补。靶分析物的结合可以破坏适体与标记互补寡核苷酸之间的杂交平衡,从而产生与靶分析物检测相关的浓度依赖性信号。尽管它在生物传感器的性能中很重要,但大多数结构切换适体的分析物响应机制尚未得到很好的理解。在这项工作中,我们使用单分子荧光成像来研究标记互补寡核苷酸与靶分析物 L-酪氨酸酰胺(L-Tym)的结合的竞争动力学,该靶分析物与 L-Tym 结合适体相互作用。互补读出链被荧光标记,允许我们测量其与固定在表面上的单个适体的杂交动力学,并使用超分辨率技术定位;小分子 L-Tym 分析物未标记,以避免附着的染料分子影响其与适体的相互作用。我们通过检测其对标记互补链杂交的影响来测量未标记 L-Tym 的结合动力学。我们发现 L-Tym 会降低互补链与适体的结合速率,但不会影响其离解速率,这表明存在 S1 样机制,其中互补链必须离解,然后 L-Tym 才能结合。竞争模型揭示了 L-Tym 和适体之间缓慢的结合速率,产生了长寿命的 L-Tym-适体复合物,该复合物阻止与标记互补链杂交。这些结果提供了有关该结构切换适体中分析物识别的动力学和机制的见解,并且该方法提供了一种通用的方法来测量基于适体的生物传感器中未标记分析物结合动力学的速率。