Suppr超能文献

使用大数据分析和决策理论分析预测 1 型糖尿病夜间低血糖

Predicting and Preventing Nocturnal Hypoglycemia in Type 1 Diabetes Using Big Data Analytics and Decision Theoretic Analysis.

机构信息

Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.

Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, Oregon, USA.

出版信息

Diabetes Technol Ther. 2020 Nov;22(11):801-811. doi: 10.1089/dia.2019.0458. Epub 2020 May 14.

Abstract

Despite new glucose sensing technologies, nocturnal hypoglycemia is still a problem for people with type 1 diabetes (T1D) as symptoms and sensor alarms may not be detected while sleeping. Accurately predicting nocturnal hypoglycemia before sleep may help minimize nighttime hypoglycemia. A support vector regression (SVR) model was trained to predict, before bedtime, the overnight minimum glucose and overnight nocturnal hypoglycemia for people with T1D. The algorithm was trained on continuous glucose measurements and insulin data collected from 124 people (22,804 valid nights of data) with T1D. The minimum glucose threshold for announcing nocturnal hypoglycemia risk was derived by applying a decision theoretic criterion to maximize expected net benefit. Accuracy was evaluated on a validation set from 10 people with T1D during a 4-week trial under free-living sensor-augmented insulin-pump therapy. The primary outcome measures were sensitivity and specificity of prediction, the correlation between predicted and actual minimum nocturnal glucose, and root-mean-square error. The impact of using the algorithm to prevent nocturnal hypoglycemia is shown in-silico. The algorithm predicted 94.1% of nocturnal hypoglycemia events (<3.9 mmol/L, 95% confidence interval [CI], 71.3-99.9) with an area under the receiver operating characteristic curve of 0.86 (95% CI, 0.75-0.98). Correlation between actual and predicted minimum glucose was high ( = 0.71,  < 0.001). In-silico simulations showed that the algorithm could reduce nocturnal hypoglycemia by 77.0% ( = 0.006) without impacting time in target range (3.9-10 mmol/L). An SVR model trained on a big data set and optimized using decision theoretic criterion can accurately predict at bedtime if overnight nocturnal hypoglycemia will occur and may help reduce nocturnal hypoglycemia.

摘要

尽管有新的葡萄糖感测技术,但 1 型糖尿病(T1D)患者仍存在夜间低血糖问题,因为在睡眠时可能无法检测到症状和传感器警报。在睡前准确预测夜间低血糖可能有助于最大程度地减少夜间低血糖。我们训练了一个支持向量回归(SVR)模型,以便在睡前预测 T1D 患者的 overnight minimum glucose 和 overnight nocturnal hypoglycemia。该算法使用来自 124 名(22804 个有效夜间数据)T1D 患者的连续葡萄糖测量值和胰岛素数据进行训练。夜间低血糖风险的最低血糖阈值是通过应用决策理论标准来最大化预期净收益得出的。在 10 名 T1D 患者进行为期 4 周的自由生活传感器增强胰岛素泵治疗试验的验证集中评估了准确性。主要的评估指标是预测的敏感性和特异性、预测的最低夜间血糖与实际最低夜间血糖之间的相关性,以及均方根误差。该算法对预防夜间低血糖的影响是在模拟环境中显示的。该算法预测了 94.1%的夜间低血糖事件(<3.9mmol/L,95%置信区间[CI],71.3-99.9),其接受者操作特征曲线下面积为 0.86(95%CI,0.75-0.98)。实际和预测的最低血糖之间的相关性很高( = 0.71,  < 0.001)。模拟模拟表明,该算法可以在不影响目标范围内(3.9-10mmol/L)时间的情况下,将夜间低血糖减少 77.0%( = 0.006)。使用大数据集训练并使用决策理论标准优化的 SVR 模型可以准确预测夜间是否会发生夜间低血糖,并可能有助于减少夜间低血糖。

相似文献

引用本文的文献

1
Artificial Intelligence to Diagnose Complications of Diabetes.人工智能用于诊断糖尿病并发症。
J Diabetes Sci Technol. 2025 Jan;19(1):246-264. doi: 10.1177/19322968241287773. Epub 2024 Nov 22.
4
Predicting Glucose Values: A New Era for Continuous Glucose Monitoring.预测血糖值:连续血糖监测的新时代。
J Diabetes Sci Technol. 2024 Sep;18(5):1000-1003. doi: 10.1177/19322968241271925. Epub 2024 Aug 19.
5
Clinical Usage and Potential Benefits of a Continuous Glucose Monitoring Predict App.连续血糖监测预测 APP 的临床应用及潜在获益
J Diabetes Sci Technol. 2024 Sep;18(5):1009-1013. doi: 10.1177/19322968241268353. Epub 2024 Aug 19.
6
Nocturnal Hypoglycemia in the Era of Continuous Glucose Monitoring.实时动态血糖监测时代的夜间低血糖
J Diabetes Sci Technol. 2024 Sep;18(5):1052-1060. doi: 10.1177/19322968241267823. Epub 2024 Aug 19.

本文引用的文献

4
Informatics, Data Science, and Artificial Intelligence.信息学、数据科学与人工智能。
JAMA. 2018 Sep 18;320(11):1103-1104. doi: 10.1001/jama.2018.8211.
7
Big Data and Machine Learning in Health Care.医疗保健中的大数据与机器学习
JAMA. 2018 Apr 3;319(13):1317-1318. doi: 10.1001/jama.2017.18391.
8
The effect of exercise on sleep in adults with type 1 diabetes.运动对 1 型糖尿病成人睡眠的影响。
Diabetes Obes Metab. 2018 Feb;20(2):443-447. doi: 10.1111/dom.13065. Epub 2017 Sep 14.
10
Blood glucose level prediction based on support vector regression using mobile platforms.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2990-2993. doi: 10.1109/EMBC.2016.7591358.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验