Suppr超能文献

结合不确定性感知预测建模和睡前智能零食干预,以预防多次注射胰岛素的 1 型糖尿病患者夜间低血糖。

Combining uncertainty-aware predictive modeling and a bedtime Smart Snack intervention to prevent nocturnal hypoglycemia in people with type 1 diabetes on multiple daily injections.

机构信息

Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, United States.

Center for Healthcare Delivery Science, Nemours Children's Health, Jacksonville, FL 32207, United States.

出版信息

J Am Med Inform Assoc. 2023 Dec 22;31(1):109-118. doi: 10.1093/jamia/ocad196.

Abstract

OBJECTIVE

Nocturnal hypoglycemia is a known challenge for people with type 1 diabetes, especially for physically active individuals or those on multiple daily injections. We developed an evidential neural network (ENN) to predict at bedtime the probability and timing of nocturnal hypoglycemia (0-4 vs 4-8 h after bedtime) based on several glucose metrics and physical activity patterns. We utilized these predictions in silico to prescribe bedtime carbohydrates with a Smart Snack intervention specific to the predicted minimum nocturnal glucose and timing of nocturnal hypoglycemia.

MATERIALS AND METHODS

We leveraged free-living datasets collected from 366 individuals from the T1DEXI Study and Glooko. Inputs to the ENN used to model nocturnal hypoglycemia were derived from demographic information, continuous glucose monitoring, and physical activity data. We assessed the accuracy of the ENN using area under the receiver operating curve, and the clinical impact of the Smart Snack intervention through simulations.

RESULTS

The ENN achieved an area under the receiver operating curve of 0.80 and 0.71 to predict nocturnal hypoglycemic events during 0-4 and 4-8 h after bedtime, respectively, outperforming all evaluated baseline methods. Use of the Smart Snack intervention reduced probability of nocturnal hypoglycemia from 23.9 ± 14.1% to 14.0 ± 13.3% and duration from 7.4 ± 7.0% to 2.4 ± 3.3% in silico.

DISCUSSION

Our findings indicate that the ENN-based Smart Snack intervention has the potential to significantly reduce the frequency and duration of nocturnal hypoglycemic events.

CONCLUSION

A decision support system that combines prediction of minimum nocturnal glucose and proactive recommendations for bedtime carbohydrate intake might effectively prevent nocturnal hypoglycemia and reduce the burden of glycemic self-management.

摘要

目的

夜间低血糖是 1 型糖尿病患者面临的一个已知挑战,尤其是对于体力活动较多或接受多次每日注射治疗的患者。我们开发了一种证据神经网络(ENN),以根据多项血糖指标和体力活动模式,预测睡前夜间低血糖(睡前 0-4 小时与睡前 4-8 小时)的概率和时间。我们利用这些预测值,通过智能零食干预,根据预测的最低夜间血糖和夜间低血糖的时间,为睡前碳水化合物摄入量制定具体方案。

材料和方法

我们利用来自 T1DEXI 研究和 Glooko 的自由生活数据集,使用该数据集开发了用于预测夜间低血糖的证据神经网络。ENN 模型的输入数据来源于人口统计学信息、连续血糖监测和体力活动数据。我们使用接收者操作特征曲线下面积来评估 ENN 的准确性,并通过模拟评估智能零食干预的临床影响。

结果

ENN 在预测睡前 0-4 小时和 4-8 小时的夜间低血糖事件时,分别获得了 0.80 和 0.71 的接收者操作特征曲线下面积,优于所有评估的基线方法。智能零食干预可将夜间低血糖的概率从 23.9±14.1%降低至 14.0±13.3%,持续时间从 7.4±7.0%降低至 2.4±3.3%。

讨论

我们的研究结果表明,基于 ENN 的智能零食干预有潜力显著降低夜间低血糖事件的频率和持续时间。

结论

结合预测最低夜间血糖和前瞻性推荐睡前碳水化合物摄入的决策支持系统,可能有效预防夜间低血糖并减轻血糖自我管理的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee55/10746320/89bef3f00a1e/ocad196f5.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验