Suppr超能文献

鉴定六个代谢基因作为肺腺癌的潜在生物标志物。

Identification Six Metabolic Genes as Potential Biomarkers for Lung Adenocarcinoma.

机构信息

Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China.

Department of Respiratory and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China.

出版信息

J Comput Biol. 2020 Oct;27(10):1532-1543. doi: 10.1089/cmb.2019.0454. Epub 2020 Apr 16.

Abstract

Metabolic genes have been reported to act as crucial roles in tumor progression. Lung adenocarcinoma (LUAD) is one of the most common cancers worldwide. This study aimed to predict the potential mechanism and novel markers of metabolic signature in LUAD. The gene expression profiles and the clinical parameters were obtained from The Cancer Genome Atlas-Lung adenocarcinoma (TCGA-LUAD) and Gene Expression Omnibus data set (GSE72094). A total of 105 differentially expressed metabolic genes of intersect expression in TCGA-LUAD and GSE72094 were screened by R language. Univariate Cox regression model found 18 survival-related genes and then the least absolute shrinkage and selection operator model was successfully constructed. Six significant genes prognostic model was validated though independent prognosis analysis. The model revealed high values for prognostic biomarkers by time-dependent receiver operating characteristic (ROC) analysis, risk score, Heatmap, and nomogram. In addition, Gene Set Enrichment Analysis showed that multiplex metabolism pathways correlated with LUAD. Furthermore, we found the six genes aberrantly expressed in LUAD samples. Our study showed that metabolism pathways play important roles in LUAD progression. The six metabolic genes could predict potential prognostic and diagnostic biomarkers in LUAD.

摘要

代谢基因被报道在肿瘤进展中起着关键作用。肺腺癌 (LUAD) 是全球最常见的癌症之一。本研究旨在预测 LUAD 代谢特征的潜在机制和新型标志物。基因表达谱和临床参数来自癌症基因组图谱-肺腺癌 (TCGA-LUAD) 和基因表达综合数据集 (GSE72094)。通过 R 语言筛选出 TCGA-LUAD 和 GSE72094 中交集表达的 105 个差异表达代谢基因。单变量 Cox 回归模型发现了 18 个与生存相关的基因,然后成功构建了最小绝对收缩和选择算子模型。通过独立预后分析验证了六个显著基因预后模型。该模型通过时间依赖性接收者操作特征 (ROC) 分析、风险评分、热图和列线图,揭示了预后生物标志物的高值。此外,基因集富集分析表明,多通路代谢与 LUAD 相关。此外,我们发现了 LUAD 样本中六个基因的异常表达。我们的研究表明,代谢途径在 LUAD 进展中起着重要作用。这六个代谢基因可以预测 LUAD 中的潜在预后和诊断生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验