Suppr超能文献

自动检测睡眠中的皮层觉醒及其对日间嗜睡的贡献。

Automatic detection of cortical arousals in sleep and their contribution to daytime sleepiness.

机构信息

Center for Sleep Sciences and Medicine, Stanford University, CA, USA; Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark; Danish Center for Sleep Medicine, Glostrup University Hospital, Glostrup, Denmark.

Center for Sleep Sciences and Medicine, Stanford University, CA, USA; Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark; Danish Center for Sleep Medicine, Glostrup University Hospital, Glostrup, Denmark.

出版信息

Clin Neurophysiol. 2020 Jun;131(6):1187-1203. doi: 10.1016/j.clinph.2020.02.027. Epub 2020 Apr 2.

Abstract

OBJECTIVE

Significant interscorer variability is found in manual scoring of arousals in polysomnographic recordings (PSGs). We propose a fully automatic method, the Multimodal Arousal Detector (MAD), for detecting arousals.

METHODS

A deep neural network was trained on 2,889 PSGs to detect cortical arousals and wakefulness in 1-second intervals. Furthermore, the relationship between MAD-predicted labels on PSGs and next day mean sleep latency (MSL) on a multiple sleep latency test (MSLT), a reflection of daytime sleepiness, was analyzed in 1447 MSLT instances in 873 subjects.

RESULTS

In a dataset of 1,026 PSGs, the MAD achieved an F1 score of 0.76 for arousal detection, while wakefulness was predicted with an accuracy of 0.95. In 60 PSGs scored by nine expert technicians, the MAD performed comparable to four and significantly outperformed five expert technicians for arousal detection. After controlling for known covariates, a doubling of the arousal index was associated with an average decrease in MSL of 40 seconds (p = 0.0075).

CONCLUSIONS

The MAD performed better or comparable to human expert scorers. The MAD-predicted arousals were shown to be significant predictors of MSL.

SIGNIFICANCE

This study validates a fully automatic method for scoring arousals in PSGs.

摘要

目的

在多导睡眠图(PSG)记录的唤醒手动评分中发现显著的评分者间变异性。我们提出了一种完全自动的方法,即多模态唤醒检测器(MAD),用于检测唤醒。

方法

一个深度神经网络在 2889 份 PSG 上进行训练,以检测皮质唤醒和 1 秒间隔的觉醒。此外,在 873 名受试者的 1447 个多睡眠潜伏期测试(MSLT)实例中,分析了 MAD 预测的 PSG 标签与次日平均睡眠潜伏期(MSL)之间的关系,MSLT 反映了日间嗜睡。

结果

在 1026 份 PSG 的数据集,MAD 对唤醒检测的 F1 评分为 0.76,而对觉醒的预测准确率为 0.95。在 60 份由九位专家技术员评分的 PSG 中,MAD 在唤醒检测方面的表现与四位专家技术员相当,明显优于五位专家技术员。在控制了已知的协变量后,唤醒指数增加一倍与 MSL 平均减少 40 秒相关(p=0.0075)。

结论

MAD 的表现优于或与人类专家评分者相当。MAD 预测的唤醒被证明是 MSL 的显著预测因子。

意义

本研究验证了一种用于 PSG 中唤醒评分的全自动方法。

相似文献

9
Objective daytime sleepiness in patients with somnambulism or sleep terrors.梦游症或夜惊症患者的日间客观嗜睡。
Neurology. 2014 Nov 25;83(22):2070-6. doi: 10.1212/WNL.0000000000001019. Epub 2014 Oct 29.
10
Subjective and objective hypersomnia highly prevalent in adults with epilepsy.癫痫患者普遍存在主观和客观的嗜睡。
Epilepsy Behav. 2020 May;106:107023. doi: 10.1016/j.yebeh.2020.107023. Epub 2020 Mar 23.

引用本文的文献

本文引用的文献

4
Expert-level sleep scoring with deep neural networks.基于深度神经网络的专家级睡眠评分。
J Am Med Inform Assoc. 2018 Dec 1;25(12):1643-1650. doi: 10.1093/jamia/ocy131.
6
Large-Scale Automated Sleep Staging.大规模自动睡眠分期
Sleep. 2017 Oct 1;40(10). doi: 10.1093/sleep/zsx139.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验