Suppr超能文献

变分网络:图像恢复变分方法早期停止的最优控制方法

Variational Networks: An Optimal Control Approach to Early Stopping Variational Methods for Image Restoration.

作者信息

Effland Alexander, Kobler Erich, Kunisch Karl, Pock Thomas

机构信息

1Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria.

2Institute of Mathematics and Scientific Computing, University of Graz, Graz, Austria.

出版信息

J Math Imaging Vis. 2020;62(3):396-416. doi: 10.1007/s10851-019-00926-8. Epub 2020 Mar 11.

Abstract

We investigate a well-known phenomenon of variational approaches in image processing, where typically the best image quality is achieved when the gradient flow process is stopped before converging to a stationary point. This paradox originates from a tradeoff between optimization and modeling errors of the underlying variational model and holds true even if deep learning methods are used to learn highly expressive regularizers from data. In this paper, we take advantage of this paradox and introduce an optimal stopping time into the gradient flow process, which in turn is learned from data by means of an optimal control approach. After a time discretization, we obtain variational networks, which can be interpreted as a particular type of recurrent neural networks. The learned variational networks achieve competitive results for image denoising and image deblurring on a standard benchmark data set. One of the key theoretical results is the development of first- and second-order conditions to verify optimal stopping time. A nonlinear spectral analysis of the gradient of the learned regularizer gives enlightening insights into the different regularization properties.

摘要

我们研究了图像处理中变分方法的一个著名现象,即在梯度流过程收敛到驻点之前停止时,通常能获得最佳图像质量。这种矛盾源于基础变分模型的优化误差和建模误差之间的权衡,即使使用深度学习方法从数据中学习高表达性正则化器,这种矛盾依然存在。在本文中,我们利用这一矛盾,在梯度流过程中引入一个最优停止时间,该时间又通过最优控制方法从数据中学习得到。经过时间离散化后,我们得到了变分网络,它可以被解释为一种特殊类型的循环神经网络。在标准基准数据集上,所学习到的变分网络在图像去噪和图像去模糊方面取得了具有竞争力的结果。关键的理论成果之一是开发了用于验证最优停止时间的一阶和二阶条件。对所学习到的正则化器梯度的非线性谱分析为不同的正则化特性提供了有启发性的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc1/7138785/6dd718cc046b/10851_2019_926_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验