Suppr超能文献

用于求解逆问题的学习到的NETT正则化的离散化

Discretization of Learned NETT Regularization for Solving Inverse Problems.

作者信息

Antholzer Stephan, Haltmeier Markus

机构信息

Department of Mathematics, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria.

出版信息

J Imaging. 2021 Nov 15;7(11):239. doi: 10.3390/jimaging7110239.

Abstract

Deep learning based reconstruction methods deliver outstanding results for solving inverse problems and are therefore becoming increasingly important. A recently invented class of learning-based reconstruction methods is the so-called NETT (for Network Tikhonov Regularization), which contains a trained neural network as regularizer in generalized Tikhonov regularization. The existing analysis of NETT considers fixed operators and fixed regularizers and analyzes the convergence as the noise level in the data approaches zero. In this paper, we extend the frameworks and analysis considerably to reflect various practical aspects and take into account discretization of the data space, the solution space, the forward operator and the neural network defining the regularizer. We show the asymptotic convergence of the discretized NETT approach for decreasing noise levels and discretization errors. Additionally, we derive convergence rates and present numerical results for a limited data problem in photoacoustic tomography.

摘要

基于深度学习的重建方法在解决逆问题方面取得了出色的成果,因此变得越来越重要。最近发明的一类基于学习的重建方法是所谓的NETT(网络蒂霍诺夫正则化),它在广义蒂霍诺夫正则化中包含一个经过训练的神经网络作为正则化器。现有的NETT分析考虑了固定算子和固定正则化器,并分析了数据中的噪声水平趋近于零时的收敛情况。在本文中,我们对框架和分析进行了大幅扩展,以反映各种实际情况,并考虑数据空间、解空间、正向算子以及定义正则化器的神经网络的离散化。我们展示了离散化的NETT方法在降低噪声水平和离散化误差时的渐近收敛性。此外,我们推导了收敛速率,并给出了光声层析成像中有限数据问题的数值结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecce/8625045/a5dc963fd521/jimaging-07-00239-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验