Suppr超能文献

作为近似变分推断的梯度正则化

Gradient Regularization as Approximate Variational Inference.

作者信息

Unlu Ali, Aitchison Laurence

机构信息

Department of Infomatics, University of Sussex, Brighton BN1 9QJ, UK.

Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK.

出版信息

Entropy (Basel). 2021 Dec 3;23(12):1629. doi: 10.3390/e23121629.

Abstract

We developed Variational Laplace for Bayesian neural networks (BNNs), which exploits a local approximation of the curvature of the likelihood to estimate the ELBO without the need for stochastic sampling of the neural-network weights. The Variational Laplace objective is simple to evaluate, as it is the log-likelihood plus weight-decay, plus a squared-gradient regularizer. Variational Laplace gave better test performance and expected calibration errors than maximum a posteriori inference and standard sampling-based variational inference, despite using the same variational approximate posterior. Finally, we emphasize the care needed in benchmarking standard VI, as there is a risk of stopping before the variance parameters have converged. We show that early-stopping can be avoided by increasing the learning rate for the variance parameters.

摘要

我们为贝叶斯神经网络(BNNs)开发了变分拉普拉斯方法,该方法利用似然曲率的局部近似来估计证据下界(ELBO),而无需对神经网络权重进行随机采样。变分拉普拉斯目标易于评估,因为它是对数似然加上权重衰减,再加上一个平方梯度正则化项。尽管使用相同的变分近似后验,变分拉普拉斯方法在测试性能和预期校准误差方面比最大后验推理和基于标准采样的变分推理表现更好。最后,我们强调在对标准变分推理进行基准测试时需要谨慎,因为存在方差参数尚未收敛就提前停止的风险。我们表明,通过提高方差参数的学习率可以避免提前停止。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c3/8700595/2ab9c11ac4cf/entropy-23-01629-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验