Unlu Ali, Aitchison Laurence
Department of Infomatics, University of Sussex, Brighton BN1 9QJ, UK.
Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK.
Entropy (Basel). 2021 Dec 3;23(12):1629. doi: 10.3390/e23121629.
We developed Variational Laplace for Bayesian neural networks (BNNs), which exploits a local approximation of the curvature of the likelihood to estimate the ELBO without the need for stochastic sampling of the neural-network weights. The Variational Laplace objective is simple to evaluate, as it is the log-likelihood plus weight-decay, plus a squared-gradient regularizer. Variational Laplace gave better test performance and expected calibration errors than maximum a posteriori inference and standard sampling-based variational inference, despite using the same variational approximate posterior. Finally, we emphasize the care needed in benchmarking standard VI, as there is a risk of stopping before the variance parameters have converged. We show that early-stopping can be avoided by increasing the learning rate for the variance parameters.
我们为贝叶斯神经网络(BNNs)开发了变分拉普拉斯方法,该方法利用似然曲率的局部近似来估计证据下界(ELBO),而无需对神经网络权重进行随机采样。变分拉普拉斯目标易于评估,因为它是对数似然加上权重衰减,再加上一个平方梯度正则化项。尽管使用相同的变分近似后验,变分拉普拉斯方法在测试性能和预期校准误差方面比最大后验推理和基于标准采样的变分推理表现更好。最后,我们强调在对标准变分推理进行基准测试时需要谨慎,因为存在方差参数尚未收敛就提前停止的风险。我们表明,通过提高方差参数的学习率可以避免提前停止。