CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
Adv Mater. 2020 May;32(21):e2000294. doi: 10.1002/adma.202000294. Epub 2020 Apr 17.
DNA origami has been widely investigated as a template for the organization of various functional elements, leading to potential applications in many fields such as biosensing, nanoelectronics, and nanophotonics. However, the synthesis of inorganic nonmetallic nanomaterials with predesigned patterns using DNA origami templates has seldom been explored. Here, a novel method is reported to site-specifically synthesize silica nanostructures with designed patterns on DNA origami templates. The molecular dynamic simulation confirms that the positively charged silica precursors have a stronger electrostatic affinity to protruding double-stranded DNA (dsDNA) than DNA origami surfaces. The work describes a novel strategy to fabricate silica nanostructures with nanoscale precision. Moreover, the site-specific silicification of DNA nanoarchitectures expands the scope of customized synthesis of inorganic nonmetallic nanomaterials.
DNA 折纸已被广泛研究作为组织各种功能元件的模板,从而在生物传感、纳米电子学和纳米光子学等多个领域有潜在的应用。然而,利用 DNA 折纸模板来合成具有预定图案的无机非金属纳米材料的研究却很少。在这里,我们报道了一种在 DNA 折纸模板上进行特定位置合成具有预定图案的二氧化硅纳米结构的新方法。分子动力学模拟证实,带正电荷的二氧化硅前驱体与突出的双链 DNA(dsDNA)具有比 DNA 折纸表面更强的静电亲和力。该工作描述了一种利用纳米级精度制备二氧化硅纳米结构的新策略。此外,DNA 纳米结构的特定位置硅化扩大了定制合成无机非金属纳米材料的范围。