Departments of †Bioengineering, ‡Computer Science, and §Computation & Neural Systems, California Institute of Technology , Pasadena, California 91125, United States.
ACS Nano. 2014 Dec 23;8(12):12030-40. doi: 10.1021/nn506014s. Epub 2014 Dec 9.
Artificial DNA nanostructures, such as DNA origami, have great potential as templates for the bottom-up fabrication of both biological and nonbiological nanodevices at a resolution unachievable by conventional top-down approaches. However, because origami are synthesized in solution, origami-templated devices cannot easily be studied or integrated into larger on-chip architectures. Electrostatic self-assembly of origami onto lithographically defined binding sites on Si/SiO2 substrates has been achieved, but conditions for optimal assembly have not been characterized, and the method requires high Mg2+ concentrations at which most devices aggregate. We present a quantitative study of parameters affecting origami placement, reproducibly achieving single-origami binding at 94±4% of sites, with 90% of these origami having an orientation within ±10° of their target orientation. Further, we introduce two techniques for converting electrostatic DNA-surface bonds to covalent bonds, allowing origami arrays to be used under a wide variety of Mg2+-free solution conditions.
人工 DNA 纳米结构,如 DNA 折纸术,具有作为模板自下而上制造生物和非生物纳米器件的巨大潜力,其分辨率是传统自上而下方法无法实现的。然而,由于折纸术是在溶液中合成的,因此无法轻松研究或将折纸术模板器件集成到更大的片上架构中。已经实现了通过静电自组装将折纸术组装到 Si/SiO2 衬底上的光刻定义结合位点上,但是尚未对最佳组装条件进行特征描述,并且该方法需要高镁离子浓度,而大多数器件在该浓度下会聚集。我们对影响折纸术放置的参数进行了定量研究,可重复性地实现了 94±4%的位点上的单折纸术结合,其中 90%的这些折纸术在其目标方向的±10°内具有取向。此外,我们引入了两种将静电 DNA-表面键转换为共价键的技术,从而允许在各种无镁离子溶液条件下使用折纸术阵列。