Suppr超能文献

钯等离子体增强原子层沉积过程中的共反应物作用。

The co-reactant role during plasma enhanced atomic layer deposition of palladium.

作者信息

Feng Ji-Yu, Minjauw Matthias M, Ramachandran Ranjith K, Van Daele Michiel, Poelman Hilde, Sajavaara Timo, Dendooven Jolien, Detavernier Christophe

机构信息

Department of Solid State Sciences, COCOON Research Group, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.

Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium.

出版信息

Phys Chem Chem Phys. 2020 Apr 29;22(16):9124-9136. doi: 10.1039/d0cp00786b.

Abstract

Atomic layer deposition (ALD) of noble metals is an attractive technology potentially applied in nanoelectronics and catalysis. Unlike the combustion-like mechanism shown by other noble metal ALD processes, the main palladium (Pd) ALD process using palladium(ii)hexafluoroacetylacetonate [Pd(hfac)2] as precursor is based on true reducing surface chemistry. In this work, a thorough investigation of plasma-enhanced Pd ALD is carried out by employing this precursor with different plasmas (H2*, NH3*, O2*) and plasma sequences (H2* + O2*, O2* + H2*) as co-reactants at varying temperatures, providing insights in the co-reactant and temperature dependence of the Pd growth per cycle (GPC). At all temperatures, films grown with only reducing co-reactants contain a large amount of carbon, while an additional O2* in the co-reactant sequence helps to obtain Pd films with much lower impurity concentrations. Remarkably, in situ XRD and SEM show an abrupt release of the carbon impurities during annealing at moderate temperatures in different atmospheres. In vacuo XPS measurements reveal the remaining species on the as-deposited surface after every exposure. Links are established between the particular surface termination prior to the precursor pulse and the observed differences in GPC, highlighting hydrogen as the key growth facilitator and carbon and oxygen as growth inhibitors. The increase in GPC with temperature for ALD sequences with H2* or NH3* prior to the precursor pulse is explained by an increase in the amount of hydrogen species that reside on the Pd surface which are available for reaction with the Pd(hfac)2 precursor.

摘要

贵金属的原子层沉积(ALD)是一项具有吸引力的技术,有望应用于纳米电子学和催化领域。与其他贵金属ALD工艺所呈现的类似燃烧的机制不同,以双(六氟乙酰丙酮)钯(II)[Pd(hfac)2]作为前驱体的主要钯(Pd)ALD工艺基于真正的还原表面化学。在这项工作中,通过在不同温度下使用这种前驱体与不同的等离子体(H2*、NH3*、O2*)和等离子体序列(H2* + O2*、O2* + H2*)作为共反应物,对等离子体增强的Pd ALD进行了深入研究,从而深入了解了每循环Pd生长(GPC)对共反应物和温度的依赖性。在所有温度下,仅使用还原共反应物生长的薄膜含有大量碳,而在共反应物序列中添加O2有助于获得杂质浓度低得多的Pd薄膜。值得注意的是,原位XRD和SEM表明,在不同气氛中于中等温度退火期间,碳杂质会突然释放。真空XPS测量揭示了每次暴露后沉积表面上残留的物种。在前驱体脉冲之前的特定表面终止与观察到的GPC差异之间建立了联系,突出了氢作为关键的生长促进剂,而碳和氧作为生长抑制剂。对于前驱体脉冲之前使用H2或NH3*的ALD序列,GPC随温度的升高是由于Pd表面上可用于与Pd(hfac)2前驱体反应的氢物种数量增加所致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验