Vandenbroucke Sofie S T, Levrau Elisabeth, Minjauw Matthias M, Van Daele Michiel, Solano Eduardo, Vos Rita, Dendooven Jolien, Detavernier Christophe
Department of Solid State Sciences, CoCooN group, Ghent University, Krijgslaan 281/S1, 9000 Gent, Belgium.
Interuniversity Micro Electronics Center (IMEC), Kapeldreef 75, 3001 Heverlee, Belgium.
Phys Chem Chem Phys. 2020 May 6;22(17):9262-9271. doi: 10.1039/d0cp00395f.
The thermal and plasma-enhanced atomic layer deposition (ALD) growth of titanium oxide using an alkylamine precursor - tetrakis(dimethylamino)titanium (TDMAT) - was investigated. The surface species present during both the precursor and co-reactant pulse were studied with in situ reflection mid-IR spectroscopy (FTIR) and in vacuo X-ray photoelectron spectroscopy (XPS). The thermal process using H2O vapor proceeds through a typical ligand exchange reaction mechanism. The plasma-enhanced ALD processes using H2O-plasma or O2-plasma exhibit an additional decomposition and combustion reaction mechanism. After the plasma exposure, imine (N[double bond, length as m-dash]C) and isocyanate (N[double bond, length as m-dash]C[double bond, length as m-dash]O) surface species were observed by in situ FTIR. In addition, nitrites (NOx) were detected using in vacuo XPS during the O2-plasma process. This study presents the importance of the use of in situ FTIR and in vacuo XPS as complementary techniques to learn more about the ALD reaction mechanism. While in situ FTIR is very sensitive to changes of chemical bonds at the surface, exact identification and quantification could only be done with the aid of in vacuo XPS.
研究了使用烷基胺前驱体——四(二甲基氨基)钛(TDMAT)通过热原子层沉积(ALD)和等离子体增强原子层沉积(ALD)生长氧化钛的过程。利用原位反射中红外光谱(FTIR)和真空X射线光电子能谱(XPS)研究了前驱体脉冲和共反应物脉冲期间存在的表面物种。使用水蒸气的热过程通过典型的配体交换反应机制进行。使用H2O等离子体或O2等离子体的等离子体增强ALD过程表现出额外的分解和燃烧反应机制。在等离子体暴露后,通过原位FTIR观察到亚胺(N═C)和异氰酸酯(N═C═O)表面物种。此外,在O2等离子体过程中使用真空XPS检测到亚硝酸盐(NOx)。本研究表明了使用原位FTIR和真空XPS作为互补技术来更多地了解ALD反应机制的重要性。虽然原位FTIR对表面化学键的变化非常敏感,但只有借助真空XPS才能进行准确的识别和定量。