Liu Ji, Lu Hongliang, Zhang David Wei, Nolan Michael
Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, T12 R5CP, Ireland.
State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.
Nanoscale. 2022 Mar 24;14(12):4712-4725. doi: 10.1039/d1nr05568b.
Cobalt (Co) is a potential candidate in replacing copper for interconnects and has been applied in trenches in the semiconductor industry for over twenty years. A non-oxidizing reactant is required in the plasma-enhanced atomic layer deposition (PE-ALD) of thin films of metals to avoid O-contamination. PE-ALD of Co has been demonstrated experimentally with plasma sources of NH or a mixture of N and H, but the growth mechanism and key reactions are not clear. In this study, we have investigated the reactions of plasma-generated predominant species, radicals ˙H, ˙N, ˙NH and ˙NH, at metal precursor (CoCp) treated Co(001) and Co(100) surfaces using static DFT calculations at 0 K and molecular dynamics simulations at 600 K. The proposed reaction mechanisms are (1) ˙N radicals play an important role in eliminating the surface-bound Cp ligand (if any) pyridine (CHN) formation and desorption, whereas ˙H radicals have endothermic reactions for eliminating the Cp ligand CpH formation and desorption; (2) the surface NH species are eliminated by ˙H radicals NH formation and desorption. The simulations of these key reactions show that on the Co(001) surface, the remaining Cp ligand and surface NH species after the metal precursor pulse will be completely removed with ˙N and ˙H radicals, resulting in Co atoms deposited on the Co(001) surface at a coverage of 3.03 Co nm. However, on the Co(100) surface, the surface NH species cannot be completely removed NH formation and desorption due to overall endothermic reactions. Instead, ˙H radicals react with trench N species, resulting from H transfer in the metal precursor pulse, to form NH. These trench N species cannot be eliminated completely on the Co(100) surface, which will be the source of N impurities in the deposited Co thin films. At the post-plasma stage, the metal surface will be covered with NH-terminations with plasma generated ˙NH radicals and is then ready for the next deposition cycle. Our DFT results highlight and explain why ammonia or H/N plasma, which produce NH species, are required to deposit high-quality and low-impurity Co thin films using Co metallocene precursors.
钴(Co)是替代铜用于互连的潜在候选材料,并且已在半导体行业的沟槽中应用了二十多年。在金属薄膜的等离子体增强原子层沉积(PE-ALD)中,需要一种非氧化性反应物以避免氧污染。已通过NH等离子体源或N和H的混合物对Co进行了PE-ALD实验演示,但生长机制和关键反应尚不清楚。在本研究中,我们使用0 K下的静态密度泛函理论(DFT)计算和600 K下的分子动力学模拟,研究了等离子体产生的主要物种自由基˙H、˙N、˙NH和˙NH在金属前驱体(CoCp)处理的Co(001)和Co(100)表面上的反应。提出的反应机制为:(1)˙N自由基在消除表面结合的Cp配体(如果有的话)、吡啶(CHN)的形成和解吸中起重要作用,而˙H自由基在消除Cp配体、CpH的形成和解吸方面有吸热反应;(2)表面NH物种通过˙H自由基、NH的形成和解吸而被消除。这些关键反应的模拟表明,在Co(001)表面上,金属前驱体脉冲后剩余的Cp配体和表面NH物种将被˙N和˙H自由基完全去除,从而导致Co原子以3.03 Co nm²的覆盖度沉积在Co(001)表面上。然而,在Co(100)表面上,由于总体吸热反应,表面NH物种无法通过NH的形成和解吸被完全去除。相反,˙H自由基与金属前驱体脉冲中H转移产生的沟槽N物种反应形成NH。这些沟槽N物种在Co(100)表面上无法被完全消除,这将成为沉积的Co薄膜中N杂质的来源。在等离子体后阶段,金属表面将被等离子体产生的˙NH自由基覆盖有NH端基,然后准备进行下一个沉积循环。我们的DFT结果突出并解释了为什么使用钴茂前驱体沉积高质量、低杂质的Co薄膜需要产生NH物种的氨或H/N等离子体。