Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland.
Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana,Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland.
J Phys Chem A. 2020 May 21;124(20):3963-3975. doi: 10.1021/acs.jpca.9b11744. Epub 2020 May 14.
CO has attracted considerable attention in recent years due to its role in the greenhouse effect and environmental management. While its reaction with water has been studied extensively, the same cannot be said for reactivity in the supercritical CO phase, where the conjugate acid/base equilibria proceed through different mechanisms and activation barriers. In spite of the apparent simplicity of the CO + HO reaction, the collective effect of different environments has a drastic influence on the free energy profile. Enhanced sampling techniques and well-tailored collective variables provide a detailed picture of the enthalpic and entropic drivers underscoring the differences in the formation mechanism of carbonic acid in the gas, aqueous, and supercritical CO phases.
近年来,由于其在温室效应和环境管理中的作用,CO 引起了相当大的关注。尽管人们已经对其与水的反应进行了广泛的研究,但对于超临界 CO 相中的反应性却不能这样说,在超临界 CO 相中,共轭酸碱平衡通过不同的机制和活化能垒进行。尽管 CO + HO 反应看起来很简单,但不同环境的综合影响对自由能曲线有很大的影响。增强采样技术和精心设计的集体变量提供了一个详细的图景,说明了在气相、水相和超临界 CO 相中碳酸形成机制的差异的焓和熵驱动因素。