Li Gen, Tao Yong, Gao Yining, Pellenq Roland J-M, Shen Peiliang, Qian Xiong, Poon Chi Sun
Department of Civil and Environmental Engineering, and Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
Institut Européen des Membranes, CNRS and Université of Montpellier, Montpellier, France.
Nat Commun. 2025 Aug 11;16(1):7386. doi: 10.1038/s41467-025-62580-6.
While CO mineralization using carbonatable binders and solid waste has become an overwhelming trend in laboratory and industrial trials, a lack of fundamental understanding of the underlying carbonation mechanisms hinders advancement of carbonation technology for large-scale applications. This study addresses this gap by employing Grand Canonical Monte Carlo simulations to unravel the optimal CO sequestration conditions within the mesopores of calcium silicate hydrates, a ubiquitous component of construction materials. Here we show that CO-surface interactions dominate at low relative humidity (RH), while CO-water interactions prevail at high RH, maximizing CO uptake during capillary condensation, where the metastable porewater boosts CO dissolution. Furthermore, we reveal the influence of surface hydrophilicity on the critical RH for optimal carbonation, indicating that less hydrophilic minerals require higher optimal carbonation RH. These insights into the complex CO-water-surface interactions within minerals' mesopores provide a foundation for developing effective CO mineralization strategies and advancing our understanding of geochemical carbonation processes.
虽然利用可碳酸化粘结剂和固体废物进行CO矿化在实验室和工业试验中已成为压倒性趋势,但对潜在碳酸化机制缺乏基本了解阻碍了碳酸化技术在大规模应用中的发展。本研究通过采用巨正则蒙特卡罗模拟来揭示水合硅酸钙(建筑材料中普遍存在的成分)中孔内的最佳CO封存条件,从而弥补了这一差距。我们在此表明,在低相对湿度(RH)下,CO与表面的相互作用占主导,而在高RH下,CO与水的相互作用占主导,在毛细凝聚过程中使CO吸收最大化,此时亚稳态孔隙水促进了CO的溶解。此外,我们揭示了表面亲水性对最佳碳酸化临界RH的影响,表明亲水性较低的矿物需要更高的最佳碳酸化RH。这些对矿物中孔内复杂的CO-水-表面相互作用的见解为制定有效的CO矿化策略和增进我们对地球化学碳酸化过程的理解奠定了基础。