Suppr超能文献

为了提高在初级即时护理环境中对前交叉韧带撕裂的识别能力。

Towards improving the identification of anterior cruciate ligament tears in primary point-of-care settings.

机构信息

Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 2177 Westbrook Mall, Vancouver, V6T 1Z3, Canada.

Arthritis Research Canada, Richmond, Canada.

出版信息

BMC Musculoskelet Disord. 2020 Apr 17;21(1):252. doi: 10.1186/s12891-020-03237-x.

Abstract

BACKGROUND

Only a small proportion of anterior cruciate ligament (ACL) tears are diagnosed on initial healthcare consultation. Current clinical guidelines do not acknowledge that primary point-of-care practitioners rely more heavily on a clinical history than special clinical tests for diagnosis of an ACL tear. This research will assess the accuracy of combinations of patient-reported variables alone, and in combination with clinician-generated variables to identify an ACL tear as a preliminary step to designing a primary point-of-care clinical decision support tool.

METHODS

Electronic medical records (EMRs) of individuals aged 15-45 years, with ICD-9 codes corresponding to a knee condition, and confirmed (ACL) or denied (ACL) first-time ACL tear seen at a University-based Clinic between 2014 and 2016 were eligible for inclusion. Demographics, relevant diagnostic indicators and ACL status based on orthopaedic surgeon assessment and/or MRI reports were manually extracted. Descriptive statistics calculated for all variables by ACL status. Univariate between group comparisons, clinician surveys (n = 17), availability of data and univariable logistic regression (95%CI) were used to select variables for inclusion into multivariable logistic regression models that assessed the odds (95%CI) of an ACL-tear based on patient-reported variables alone (consistent with primary point-of-care practice), or in combination with clinician-generated variables. Model performance was assessed by accuracy, sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios (95%CI).

RESULTS

Of 1512 potentially relevant EMRs, 725 were included. Participant median age was 26 years (range 15-45), 48% were female and 60% had an ACL tear. A combination of patient-reported (age, sport-related injury, immediate swelling, family history of ACL tear) and clinician-generated (Lachman test result) variables were superior for ACL tear diagnosis [accuracy; 0.95 (90,98), sensitivity; 0.97 (0.88,0.98), specificity; 0.95 (0.82,0.99)] compared to the patient-reported variables alone [accuracy; 84% (77,89), sensitivity; 0.60 (0.44,0.74), specificity; 0.95 (0.89,0.98)].

CONCLUSIONS

A high proportion of individuals without an ACL tear can be accurately identified by considering patient-reported age, injury setting, immediate swelling and family history of ACL tear. These findings directly inform the development of a clinical decision support tool to facilitate timely and accurate ACL tear diagnosis in primary care settings.

摘要

背景

只有一小部分前交叉韧带 (ACL) 撕裂在初次就诊时得到诊断。目前的临床指南并未承认,一线医护人员在诊断 ACL 撕裂时,更多地依赖临床病史而非特殊的临床检查。本研究旨在评估仅基于患者报告变量,以及结合临床医生生成变量组合,对 ACL 撕裂进行识别的准确性,这是设计一线医护人员临床决策支持工具的初步步骤。

方法

从 2014 年至 2016 年在一所大学诊所就诊的 15-45 岁人群中,选取符合国际疾病分类第 9 版 (ICD-9) 编码对应膝关节疾病,且经骨科医生评估和/或 MRI 报告确诊(ACL)或排除(ACL)初次 ACL 撕裂的患者的电子病历(EMR)纳入研究。手动提取人口统计学、相关诊断指标和 ACL 状态等数据,基于骨科医生评估和/或 MRI 报告进行 ACL 撕裂诊断。通过 ACL 状态计算所有变量的描述性统计。采用单变量组间比较、临床医生问卷调查(n=17)、数据可用性和单变量逻辑回归(95%置信区间),筛选变量纳入多变量逻辑回归模型,以评估基于患者报告变量(与一线医护实践一致)或结合临床医生生成变量的 ACL 撕裂可能性的比值比(95%置信区间)。通过准确性、敏感性、特异性、阳性和阴性预测值以及阳性和阴性似然比(95%置信区间)评估模型性能。

结果

在 1512 份潜在相关的 EMR 中,纳入了 725 份。参与者的中位年龄为 26 岁(范围 15-45 岁),48%为女性,60%存在 ACL 撕裂。患者报告的(年龄、与运动相关的损伤、即刻肿胀、ACL 撕裂家族史)和临床医生生成的(Lachman 试验结果)变量的组合,在 ACL 撕裂诊断方面优于仅基于患者报告的变量[准确性:0.95(0.90,0.98),敏感性:0.97(0.88,0.98),特异性:0.95(0.82,0.99)]。

结论

通过考虑患者报告的年龄、损伤情况、即刻肿胀和 ACL 撕裂家族史,可以准确识别出大部分无 ACL 撕裂的患者。这些发现直接为开发临床决策支持工具提供了信息,以促进在初级保健环境中及时、准确地诊断 ACL 撕裂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验